[1] Adzic R R, Wang J X, Magnussen O M, et al. Structure of tl adlayers on the Pt(111) electrode surface: Effects of solution pH and bisulfate coadsorption[J]. Journal of Physical Chemistry, 1996,100(35): 14721-14725.[2] Armand D, Clavilier J. Quantitative-analysis of the distribution of the hydrogen adsorption states at platinum surfaces.1. Application to Pt(100) in sulfuric-acid medium[J]. Journal of Electroanalytical Chemistry, 1987, 225(1/2): 205-214.[3] Buller L J, Herrero E, Gómez R, et al. Anion effects and induced adsorption of chloride by submonolayer amounts of copper on deliberately stepped platinum surfaces[J]. Journal of Physical Chemistry B, 2000,104(25): 5932-5939.[4] Buller L J, Herrero E, Gómez R, et al. Induced adsorption of sulfate/bisulfate anions by submonolayer amounts of copper on deliberately stepped Pt surfaces[J]. Journal of the Chemical Society-Faraday Transactions, 1996,92(20): 3757-3762.[5] Buller L J, Abruna H D, Herrero E, et al. Induced adsorption of sulfate bisulfate and chloride anions by submonolayer amounts of copper on the stepped surfaces of platinum[J]. Abstracts of Papers of the American Chemical Society, 1995, 210: 173-COLL[6] Clavilier J, Orts J M, Gómez R, et al. 1994. On the nature of the charged species displaced by co adsorption from platinum oriented electrodes in sulphuric acid solution[M]. ed. BE Conway, G Jerkiewicz, pp. 167-183. Pennington, NJ: The Electrochemical Society, INC.[7] Clavilier J, Armand D, Sun S G, et al. Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 205(1/2): 267-277.[8] Climent V, Gómez R, Orts J M, et al. Thermodynamic analysis of the temperature dependence of oh adsorption on Pt(111) and Pt(100) electrodes in acidic media in the absence of specific anion adsorption[J]. Journal of Physical Chemistry B, 2006,110(23): 11344-11351.[9] Danilov A I, Molodkina E B, Polukarov Y M, et al. Active centers for cuupd-opd in acid sulfate solution on Pt(111) electrodes[J]. Electrochimica Acta, 2001,46(20/21): 3137-3145.[10] Del Colle V, Souza-Garcia J, Tremiliosi G, et al. Electrochemical and spectroscopic studies of ethanol oxidation on Pt stepped surfaces modified by tin adatoms[J]. Physical Chemistry Chemical Physics, 2011,13(26): 12163-12172.[11] Del Colle V, Berna A, Tremiliosi G, et al. Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: Electrochemical and spectroscopic studies[J]. Physical Chemistry Chemical Physics, 2008, 10(25): 3766-3773.[12] Domke K, Herrero E, Rodes A, et al. Determination of the potentials of zero total charge of Pt(100) stepped surfaces in the 01(-1) zone. Effect of the step density and anion adsorption[J]. Journal of Electroanalytical Chemistry, 2003, 552: 115-128.[13] Feliu J M, Herrero E, Climent V. Catalysis in electrochemistry//[M], ed. E Santos, W Schmickler, 2011, pp. 127-163. Hoboken: John Wiley & Sons, Inc.[14] Feliu J M, Fernández-Vega A, Aldaz A, et al. New observations of a structure sensitive electrochemical-behavior of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt(111) and Pt(100) orientations[J]. Journal of Electroanalytical Chemistry, 1988, 256: 149-163.[15] Francke R, Climent V, Baltruschat H, et al. Electrochemical deposition of copper on stepped platinum surfaces in the 01(1)over-bar zone vicinal to the (100) plane[J]. Journal of Electroanalytical Chemistry, 2008, 624: 228-240.[16] Gamboaaldeco M E, Herrero E, Zelenay P S, et al. Adsorption of bisulfate anion on a Pt(100) electrode - a comparison with Pt(111) and Pt(poly)[J]. Journal of Electroanalytical Chemistry, 1993,348: 451-457.[17] Garcia-Araez N, Climent V, Herrero E, et al. Thermodynamic studies of bromide adsorption at the Pt(111) electrode surface perchloric acid solutions: Comparison with other anions[J]. Journal of Electroanalytical Chemistry, 2006, 591: 149-158.[18] Garcia-Araez N, Lukkien J J, Koper MTM, et al. Competitive adsorption of hydrogen and bromide on Pt(100): Mean-field approximation vs. Monte carlo simulations[J]. Journal of Electroanalytical Chemistry, 2006, 588: 1-14.[19] Garcia-Araez N, Climent V, Herrero E, et al. On the electrochemical behavior of the Pt(100) vicinal surfaces in bromide solutions[J]. Surface Science, 2004, 560(1/3): 269-284.[20] Gómez R, Orts J M, Alvarez-Ruiz B, et al. Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4[J]. Journal of Physical Chemistry B, 2004, 108(1): 228-238.[21] Gómez R, Yee H S, Bommarito G M, et al. Anion effects and the mechanism of Cu UPD on Pt(111) - X-ray and electrochemical studies[J]. Surface Science, 1995, 335: 101-109.[22] Gómez R, Feliu J M, Abruna H D. Induced adsorption of chloride and bromide by submonolayer amounts of copper underpotentially deposited on Pt(111)[J]. Journal of Physical Chemistry B, 1994, 98: 5514-5521.[23] Gómez R, Clavilier J. Electrochemical behaviour of platinum surfaces containing (110) sites and the problem of the third oxidation peak[J]. Journal of Electroanalytical Chemistry, 1993, 354: 189-208.[24] Herrero E, Buller L J, Abruna H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials[J]. Chemical Reviews, 2001,101(7): 1897-1930.[25] Herrero E, Climent V, Feliu J M. On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface[J]. Electrochemistry Communications, 2000, 2: 636-640.[26] Herrero E, Glazier S, Abruna H D. X-ray and electrochemical studies of cu upd on Au(111) single-crystal electrodes in the presence of bromide[J]. Journal of Physical Chemistry B, 1998, 102: 9825-9833.[27] Hoshi N, Nakahara A, Nakamura M, et al. Surface X-ray scattering of high index plane of platinum containing kink atoms in solid-liquid interface: Pt(310) = 3(100)-(110)[J]. Electrochimica Acta, 2008, 53(21): 6070-6075.[28] Inukai J, Sugita S, Itaya K. Underpotential deposition of mercury on Au(111) investigated by in situ scanning tunnelling microscopy[J]. Journal of Electroanalytical Chemistry, 1996, 403: 159-168.[29] Kibler L A, El Aziz A M, Hoyer R, et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005, 44(14): 2080-2084.[30] Lang B, Joyner R W, Somorjai G A. Leed studies of high index crystal surfaces of platinum[J]. Surface Science, 1972, 30: 440.[31] Leiva E, Iwasita T, Herrero E, et al. Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model[J]. Langmuir, 1997, 13(23): 6287-6293.[32] Llorca M J, Feliu J M, Aldaz A, et al. Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes[J]. Journal of Electroanalytical Chemistry, 1994, 376: 151-160.[33] Maciá M D, Herrero E, Feliu J M. Formic acid self-poisoning on adatom-modified stepped electrodes[J]. Electrochimica Acta, 2002, 47(22/23): 3653-3661.[34] Maciá M D, Herrero E, Feliu J M, et al. Formic acid self-poisoning on bismuth-modified stepped electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 500: 498-509.[35] Magnussen O M, Hotlos J, Beitel G, et al. Atomic structure of ordered copper adlayers on single-crystalline gold electrodes[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1991, 9(2): 969-975.[36] Magnussen O M, Hotlos J, Nichols R J, et al. Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunneling microscopy[J]. Physical Review Letters, 1990, 64: 2929-2932.[37] Markovic N M, Marinkovic N S, Adzic R R. Electrosorption of hydrogen and sulphuric acid anions on single crystal platinum stepped surfaces. Part 1. The [110] zone[J]. Journal of Electroanalytical Chemistry, 1988,241: 309-328.[38] Massong H, Wang H S, Samjeske G, et al. The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of Co[J]. Electrochimica Acta, 2000, 46(5): 701-707.[39] Rodes A, Clavilier J, Orts J M, et al. Electrochemical behavior of platinum (100) in various acidic media. PartⅡ. On the relation between the voltammetric profiles induced by anion specific adsorption studied with a transfer technique preserving surface cleanliness and structure[J]. Journal of Electroanalytical Chemistry, 1992, 338(1/2): 317-338.[40] Ruban A V, Skriver H L, Norskov J K. Surface segregation energies in transition-metal alloys[J]. Physical Review B, 1999, 59: 15990-16000.[41] Samjeske G, Xiao X Y, Baltruschat H. Ru decoration of stepped Pt single crystals and the role of the terrace width on the electrocatalytic Co oxidation[J]. Langmuir, 2002, 18(12): 4659-4666.[42] Shi Z, Lipkowski J, Gamboa M, et al. Investigations of SO42- adsorption at the Au(111) electrode by chronocoulometry and radiochemistry[J]. Journal of Electroanalytical Chemistry, 1994, 366: 317-326.[43] Shinotsuka N, Sashikata K, Itaya K. In-situ scanning-tunneling-microscopy of underpotential deposition of Ag on Pt(111) R19.1o-1[J]. Surface Science, 1995, 335(1/3): 75-82.[44] Smoluchowski R. Anisotropy of the electronic work function of metals[J]. Physical Review, 1941, 60: 661-674.[45] Solla-Gullón J, Rodríguez P, Herrero E, et al. Surface characterization of platinum electrodes[J]. Physical Chemistry Chemical Physics, 2008, 10: 1359-1373.[46] Souza-Garcia J, Climent V, Feliu J M. Voltammetric characterization of stepped platinum single crystal surfaces vicinal to the (110) pole[J]. Electrochemistry Communications, 2009, 11(7): 1515-1518.[47] Zolfaghari A, Jerkiewicz G. Temperature-dependent research on Pt(111) and Pt(100) electrodes in aqueous H2SO4[J]. Journal of Electroanalytical Chemistry, 1999, 467: 177-185. |