[1] Bozokalfa G, Akbulut H, Demir Bilal, et al. Polypeptide functional surface for the aptamer immobilization: electrochemical cocaine biosensing [J]. Analytical Chemistry, 2016, 88(7): 4161-4167.
[2] Sedeño P Y, Agüí L, Villalonga R, et al. Biosensors in forensic analysis. A review[J]. Analytica Chimica Acta, 2014, 823: 1-19.
[3] Neves M A D, Blaszykowski C, Bokhari S, et al. Ultra-high frequency piezoelectric aptasensor for the label-free detectection of cocaine[J]. Biosensors and Bioelectronics, 2015, 72: 383-392.
[4] Miao W J. Electrogenerated chemiluminescence and its biorelated applications[J]. Chemical Reviws, 2008, 108(7): 2506-2553.
[5] Li L L, Chen Y, Zhu J J. Recent advances in electrochemiluminescence analysis[J]. Analytical Chemistry, 2017, 89(1): 358-371.
[6] Wei H, Wang E K. Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: a review[J]. Luminescence, 2011, 26: 77-85.
[7] Zhou Z Y(周镇宇), Xu L R(许林茹), Su B(苏彬). Electrochemiluminescence imaging focusing: array analysis and visualization of latent fingerprints[J]. Journal of Elctrochemistry(电化学), 2014, 20(6): 506-514.
[8] Deng C Y(邓春艳), Fan H M(范慧敏), Xiang J(向娟), et al. A sensitive and label-free electrochemical aptasensor based on signal amplification of carbon nanotubes[J]. Journal of Elctrochemistry(电化学), 2014, 20(4): 386-391.
[9] Ma D L, Wang M D, He, B Y, et al. A luminescent cocaine detection platform using a split G-quadruplex-selective iridium(III) complex and a three-way DNA junction architecture[J]. ACS Applied Material Interfaces, 2015, 7(34): 19060-19067.
[10] Rauf S, Zhang L, Ali A, et al. Label-free nanopore biosensor for rapid and highly sensitive cocaine detection in complex biological fluids[J]. ACS Sensors, 2017, 2(2): 227-234.
[11] Wen Y L, Pei H, Wan Y, et al. DNA Nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors[J]. Analytical Chemistry, 2011, 83(19): 7418-7423.
[12] Li Y, Qi H L, Peng Y G, et al. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine[J]. Electrochemistry Communications, 2007, 9(10): 2571-2575.
[13] Sun B, Qi H L, Ma F, et al. Double covalent coupling method for the fabrication of highly sensitive and reusable electrogenerated chemiluminescence sensors[J]. Analytical Chemistry, 2010, 82(12): 5046-5052.
[14] Sun B(孙 波), Qi H L(漆红兰), Ling C(凌 晨), et al. Sensitive electrogenerated chemiluminescence sensor for determination of heroin[J]. Chinese Journal of Analytical Chemistry(分析化学), 2009, 37(11): 1601-1605.
[15] Qi H L, Li M, Zhang R, et al. Double electrochemical covalent coupling method based on click chemistry and diazonium chemistry for the fabrication of sensitive amperometric immunosensor[J]. Analytica Chimica Acta, 2013, 792: 28-34.
[16] Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie International Edition, 2001, 40(11): 2004-2021.
[17] Li H M, Cheng F Y, Duft A M, et al. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by“click”coupling[J]. Journal of American Chemistry Society, 2005, 127(41): 14518-14524.
[18] Jubete E, Zelechowska K, Loaiza O A, et al. Derivatization of SWCNTs with cobalt phthalocyanine residues and applications in screen printed electrodes for electrochemical detection of thiocholine[J]. Electrochimica Acta, 2011, 56(11): 3988-3995.
[19] Pang Y H, Ge Z H, Liu Y, et al. Covalent grafting folate on Au electrode via click chemistry[J]. Electrochemistry Communications, 2012, 23: 98-101.
[20] Ran Q, Peng R, Liang C, et al. Covalent immobilization of horseradish peroxidase via click chemistry and its direct electrochemistry[J]. Talanta, 2011, 83(5): 1381-1385.
[21] Ran Q, Peng R, Liang C, et al. Direct electrochemistry of horseradish peroxidase immobilized on electrografted 4-ethynylphenyl film via click chemistry[J]. Analytica Chimica Acta, 2011, 697(1/2): 27-31.
[22] Qi H L, Ling C, Huang R, et al. Functionalization of single-walled carbon nanotubes with protein by click chemistry as sensing platform for sensitized electrochemical immunoassay[J]. Electrochimica Acta, 2012, 63: 76-82.
[23] Hayat A, Sassolas A, Marty J L, et al. Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry[J]. Talanta, 2013, 103: 14-19.
[24] Devaraj N K, Dinolfo P H, Chidsey C E D, et al. Selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst[J]. Journal of American Chemistry Society, 2006, 128(6): 1794-1795.
[25] Delamar M, Hitmi R, Pinson J, et al. Covalent modification of carbon surfaces by grafting of functionalized arylradicals produced from electrochemical reduction of diazonium salts[J]. Journal of American Chemistry Society, 1992, 114(14): 5883-5884.
[26] Lubin A A, Hunt B V S, White R J, et al. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor[J]. Analytical Chemistry, 2009, 81(6): 2150-2158.
[27] Nie G M, Bai Z M, Yu W Y, et al. Electrochemiluminescence biosensor based on conducting poly(5-formylindole) for sensitive detection of ramos cells[J]. Biomacromolecules, 2013, 14(3): 834-840.
[28] Lyskawa J, Bélanger D. Direct modification of a gold electrode with aminophenyl groups by electrochemical reduction of in situ generated aminophenyl monodiazonium cations[J]. Chemistry of Materials, 2006, 18(20): 4755-4763.
[29] Boland S, Barrière F, Leech D. Designing stable redox-active surfaces: chemical attachment of an osmium complex to glassy carbon electrodes prefunctionalized by electrochemical reduction of an in situ-generated aryldiazonium cation[J]. Langmuir, 2008, 24(12): 6351-6358.
[30] Qiu L, Zhou H, Zhu W P, et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption[J]. New Journal of Chemistry, 2013, 37(12): 3998-4003. |