[1] Kuwana T, Darlington R K, Leedy D W. Electrochemical studies using conducting glass indicator electrodes[J]. Analytical Chemistry, 1964, 36(10): 2023-2025.
[2] Tian Z Q, Ren B. Adsorption and reaction at electrochemical interfacces as probed by surface-enhanced Raman spectroscopy[J]. Annual Review of Physical Chemistry, 2004, 55(1): 197-229.
[3] Wu D Y, Li J F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews, 2008, 37(5): 1025-1041.
[4] Ren B(任斌), Li J F(李剑锋), Huang Y F(黄逸凡), et al. Electrochemical surface-enhanced Raman spectroscopy-current status and perspective[J]. Journal of Electrochemistry(电化学), 2010, 16(3): 305-316.
[5] Zeng Z C, Huang S C, Wu D Y, et al. Electrochemical tip-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(37): 11928-11931.
[6] Wang X, Huang S C, Huang T X, et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces[J]. Chemical Society Reviews, 2017, 46(13): 4020-4041.
[7] Mark H B, Pons B S. An in situ spectrophotometric method for observing the infrared spectra of species at the electrode surface during electrolysis[J]. Analytical Chemistry, 1966, 38(1): 119-121.
[8] Osawa M, Ataka K, Yoshii K, et al. Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces[J]. Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65: 371-379.
[9] Yang Y Y(阳耀月), Zhang H X(张涵轩), Cai W B(蔡文斌). Recent experimental progresses on electrochemical ATR-SEIRAS[J]. Journal of Electrochemistry(电化学), 2013, 19(1): 6-16.
[10] Bewick A, Kunimatsu K, Robinson J, et al. IR vibrational spectroscopy of species in the electrode-electrolyte solution interphase[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 119(1): 175-185.
[11] Bewick A, Kunimatsu K, Pons B S, et al. Electrochemically modulated infrared spectroscopy (EMIRS): Experimental details[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 160(1): 47-61.
[12] Hartstein A, Kirtley J R, Tsang J C. Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers[J]. Physical Review Letters, 1980, 45(3): 201-204.
[13] Aroca R F, Ross D J, Domingo C. Surface-enhanced infrared spectroscopy[J]. Applied Spectroscopy, 2004, 58(11): 324A-338A.
[14] Osawa M. Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)[J]. Bulletin of the Chemical Society of Japan, 1997, 70(12): 2861-2880.
[15] Adato R, Aksu S, Altug H. Engineering mid-infrared nano-antennas for surface enhanced infrared absorption spectroscopy[J]. Materials Today, 2015, 18(8): 436-446.
[16] Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas[J]. Chemical Reviews, 2017, 117(7): 5110-5145.
[17] Yang X X, Sun Z P, Low T, et al. Nanomaterial-based plasmon-enhanced infrared spectroscopy[J]. Advanced Materials, 2018, 30(20): 23.
[18] Osawa M. Surface-enhanced infrared absorption[M]//Near-field optics and surface plasmon polaritons. Germany: Springer Berlin Heidelberg, 2001: 163-187.
[19] Osawa M. Surface-enhanced infrared absorption spectro-scopy[M]//Handbook of vibrational spectroscopy. Chichester: John Wiley & Sons, Ltd, 2006: 785-799.
[20] Osawa M, Ataka K, Yoshii K, et al. Surface-enhanced infrared spectroscopy: The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles[J]. Applied Spectroscopy, 1993, 47(9): 1497-1502.
[21] Wang T T, Bai J, Jiang X E, et al. Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry[J]. ACS Nano, 2012, 6(2): 1251-1259.
[22] Jiang X E, Zaitseva E, Schmidt M, et al. Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy[J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12113-12117.
[23] Jiang X E, Engelhard M, Ataka K, et al. Molecular impact of the membrane potential on the regulatory mechanism of proton transfer in sensory rhodopsin II[J]. Journal of the American Chemical Society, 2010, 132(31): 10808-10815.
[24] Johnson E, Aroca R. Surface-enhanced infrared spectroscopy of monolayers[J]. The Journal of Physical Chemistry, 1995, 99(23): 9325-9330.
[25] Ataka K, Yotsuyanagi T, Osawa M. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy[J]. The Journal of Physical Chemistry, 1996, 100(25): 10664-10672.
[26] Ataka K, Heberle J. Electrochemically induced surface-enhanced infrared difference absorption (SEIDA) spectro-scopy of a protein monolayer[J]. Journal of the American Chemical Society, 2003, 125(17): 4986-4987.
[27] Larmour I A, Graham D. Surface enhanced optical spectroscopies for bioanalysis[J]. Analyst, 2011, 136(19): 3831-3853.
[28] Li J, Zheng B, Zhang Q W, et al. Attenuated total reflection surface-enhanced infrared absorption spectroscopy: A powerful technique for bioanalysis[J]. Journal of Analysis and Testing, 2017, 1(1): 8.
[29] Ataka K, Stripp S T, Heberle J. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(10): 2283-2293.
[30] Barth A, Zscherp C. What vibrations tell about proteins[J]. Quarterly Reviews of Biophysics, 2002, 35(4): 369-430.
[31] Ataka K, Heberle J. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes[J]. Journal of the American Chemical Society, 2004, 126(30): 9445-9457.
[32] Jiang X E, Ataka K, Heberle J. Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: In situ observation by surface-enhanced infrared absorption spectroscopy[J]. The Journal of Physical Chemistry C, 2008, 112(3): 813-819.
[33] Lin S R, Jiang X E, Wang L X, et al. Adsorption orientation of horse heart cytochromecon a bare gold electrode hampers its electron transfer[J]. The Journal of Physical Chemistry C, 2012, 116(1): 637-642.
[34] Jin B, Wang G X, Millo D, et al. Electric-field control of the pH-dependent redox process of cytochrome c immobilized on a gold electrode[J]. The Journal of Physical Chemistry C, 2012, 116(24): 13038-13044.
[35] Liu L, Wu L, Zeng L, et al. Label-free surface-enhanced infrared spectro-electro-chemical analysis of the redox potential shift of cytochrome c complexed with a cardiolipin-containing lipid membrane of varied composition[J]. Chinese Physics B, 2015, 24(12): 128201.
[36] Liu L, Zeng L, Wu L, et al. Label-free surface-enhanced infrared spectroelectrochemistry studies the interaction of cytochrome c with cardiolipin-containing membranes[J]. The Journal of Physical Chemistry C, 2015, 119(8): 3990-3999.
[37] Zeng L, Wu L, Liu L, et al. Analyzing structural properties of heterogeneous cardiolipin-bound cytochrome c and their regulation by surface-enhanced infrared absorption spectroscopy[J]. Analytical Chemistry, 2016, 88(23): 11727-11733.
[38] Zeng L, Wu L, Liu L, et al. The role of water distribution controlled by transmembrane potentials in the cytochrome c-cardiolipin interaction: Revealing from surface-enhanced infrared absorption spectroscopy[J]. Chemistry - A European Journal, 2017, 23(61): 15491-15497.
[39] Ataka K, Giess F, Knoll W, et al. Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: In situ monitoring by surface-enhanced infrared absorption spectroscopy[J]. Journal of the American Chemical Society, 2004, 126(49): 16199-16206.
[40] Ataka K, Richter B, Heberle J. Orientational control of the physiological reaction of cytochrome c oxidase tethered to a gold electrode[J]. The Journal of Physical Che-
mistry B, 2006, 110(18): 9339-9347.
[41] Jiang X E, Zuber A, Heberle J, et al. In situ monitoring of the orientated assembly of strep-tagged membrane proteins on the gold surface by surface enhanced infrared absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2008, 10(42): 6381-6387.
[42] Chen Y, Jin B, Guo L R, et al. Hemoglobin on phosphonic acid terminated self-assembled monolayers at a gold electrode: Immobilization, direct electrochemistry, and electrocatalysis[J]. Chemistry - A European Journal, 2008, 14(34): 10727-10734.
[43] Cao F J, Wang L X, Jiang X E, et al. Investigation of the effects of surface chemistry on adsorption of albumin by surface-enhanced FTIR spectroscopy[J]. RSC Advances, 2013, 3(38): 17214-17221.
[44] Gutierrez-Sanz O, Marques M, Pereira I A C, et al. Orientation and function of a membrane-bound enzyme monitored by electrochemical surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2013, 4(17): 2794-2798.
[45] Millo D, Hildebrandt P, Pandelia M-E, et al. SEIRA spectroscopy of the electrochemical activation of an immobilized [NiFe] hydrogenase under turnover and non-turnover conditions[J]. Angewandte Chemie International Edition, 2011, 50(11): 2632-2634.
[46] Vaz-Domínguez C, Pita M, De Lacey A L, et al. Combined ATR-SEIRAS and EC-STM study of the immobilization of laccase on chemically modified Au electrodes[J]. The Journal of Physical Chemistry C, 2012, 116(31): 16532-16540.
[47] Gebert J, Reiner-Rozman C, Steininger C, et al. Electron transfer to light-activated photosynthetic reaction centers from Rhodobacter sphaeroides reconstituted in a biomim-
etic membrane system[J]. Journal of Physical Chemistry C, 2015, 119(2): 890-895.
[48] Nedelkovski V, Schwaighofer A, Wraight C A, et al. Surface-enhanced infrared absorption spectroscopy (SEIRAS) of light-activated photosynthetic reaction centers from Rhodobacter sphaeroides reconstituted in a biomimetic membrane system[J]. Journal of Physical Chemistry C, 2013, 117(32): 16357-16363.
[49] Kozuch J, Steinem C, Hildebrandt P, et al. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes[J]. Angewandte Chemie International Edition, 2012, 51(32): 8114-8117.
[50] Kozuch J, Weichbrodt C, Millo D, et al. Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy[J]. Physical Chemistry Chemical Physics, 2014, 16(20): 9546-9555.
[51] Noguchi H, Adachi T, Nakatomi A, et al. Biofunctionality of calmodulin immobilized on gold surface studied by surface enhanced infrared absorption spectroscopy-Ca2+ induced conformational change and binding to a target peptide[J]. The Journal of Physical Chemistry C, 2016, 120(29): 16035-16041.
[52] Moe E, Sezer M, Hildebrandt P, et al. Surface enhanced vibrational spectroscopic evidence for an alternative DNA-independent redox activation of endonuclease III[J]. Chemical Communications, 2015, 51(15): 3255-3257.
[53] Kato M, Nakagawa S, Tosha T, et al. Surface-enhanced infrared absorption spectroscopy of bacterial nitric oxide reductase under electrochemical control using a vibrational probe of carbon monoxide[J]. Journal of Physical Chemistry Letters, 2018, 9(17): 5196-5200.
[54] Salewski J, Batista A P, Sena F V, et al. Substrate-protein interactions of type II NADH: Quinone oxidoreductase from Escherichia coli[J]. Biochemistry, 2016, 55(19): 2722-
2734.
[55] Kriegel S, Uchida T, Osawa M, et al. Biomimetic environment to study E-coli complex I through surface-enhanced IR absorption spectroscopy[J]. Biochemistry, 2014, 53(40): 6340-6347.
[56] Wiebalck S, Kozuch J, Forbrig E, et al. Monitoring the transmembrane proton gradient generated by cytochrome bo3 in tethered bilayer lipid membranes using SEIRA spectroscopy[J]. Journal of Physical Chemistry B, 2016, 120(9): 2249-2256.
[57] Gutierrez-Sanz O, Forbig E, Batista A P, et al. Catalytic activity and proton translocation of reconstituted respiratory complex I monitored by surface-enhanced infrared absorption spectroscopy[J]. Langmuir, 2018, 34(20): 5703-5711.
[58] Zhang X F, Zeng L, Liu L, et al. Surface-enhanced infrared absorption spectroscopy and electrochemistry reveal the impact of nanoparticles on the function of protein immobilized on mimic biointerface[J]. Electrochimica Acta, 2016, 211: 148-155.
[59] Liu L, Zeng L, Wu L, et al. Revealing the effect of protein weak adsorption to nanoparticles on the interaction between the desorbed protein and its binding partner by surface-enhanced infrared spectroelectrochemistry[J]. Analytical Chemistry, 2017, 89(5): 2724-2730.
[60] Levin C S, Kundu J, Janesko B G, et al. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies[J]. The Journal of Physical Chemistry B, 2008, 112(45): 14168-14175.
[61] Quirk A, Lardner M J, Tun Z, et al. Surface-enhanced infrared spectroscopy and neutron reflectivity studies of ubiquinone in hybrid bilayer membranes under potential control[J]. Langmuir, 2016, 32(9): 2225-2235.
[62] Forbrig E, Staffa J K, Salewski J, et al. Monitoring the orientational changes of alamethicin during incorporation into bilayer lipid membranes[J]. Langmuir, 2018, 34(6): 2373-2385.
[63] Uchida T, Osawa M, Lipkowski J. SEIRAS studies of water structure at the gold electrode surface in the presence of supported lipid bilayer[J]. Journal of Electroanalytical Chemistry, 2014, 716: 112-119.
[64] Wang T T, Jiang X E. The broken of phosphodiester bond: A key factor induced hemolysis[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 129-136.
[65] Wang T T, Zhu S J, Jiang X E. Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy[J]. Toxicology Research, 2015, 4(4): 885-894.
[66] Wu L, Zeng L, Jiang X E. Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(32): 10052-10055.
[67] Wu L, Jiang X E. Proton transfer at the interaction interface of graphene oxide[J]. Analytical Chemistry, 2018, 90(17): 10223-10230.
[68] Busalmen J P, Berná A, Feliu J M. Spectroelectrochemical examination of the interaction between bacterial cells and gold electrodes[J]. Langmuir, 2007, 23(11): 6459-6466.
[69] Busalmen J P, Esteve-Núñez A, Berná A, et al. C-type cytochromes wire electricity-producing bacteria to electrodes[J]. Angewandte Chemie-International Edition, 2008, 47(26): 4874-4877.
[70] Busalmen J P, Esteve-Nunez A, Berna A, et al. ATRSEIRAS characterization of surface redox processes in G. sulfurreducens[J]. Bioelectrochemistry, 2010, 78(1): 25-
29.
[71] Kuzume A, Zhumaev U, Li J, et al. An in situ surface electrochemistry approach towards whole-cell studies: The structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces[J]. Physical Chemistry Chemical Physics, 2014, 16(40): 22229-22236.
[72] Dunwell M, Yan Y S and Xu B J. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au[J]. Surface Science, 2016, 650: 51-
56.
[73] Motobayashi K, Osawa M. Potential-dependent condensation of water at the interface between ionic liquid BMIM TFSA and an Au electrode[J]. Electrochemistry Communications, 2016, 65: 14-17.
[74] Yaguchi M, Uchida T, Motobayashi K, et al. Speciation of adsorbed phosphate at gold electrodes: A combined surface-enhanced infrared absorption spectroscopy and DFT study[J]. Journal of Physical Chemistry Letters, 2016, 7(16): 3097-3102.
[75] Dunwell M, Wang J H, Yan Y, et al. Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces[J]. Physical Chemistry Chemical Physics, 2017, 19(2): 971-975.
[76] Ma M(马敏), Yang Y Y(阳耀月), Zhang H X(张涵轩), et al. Preliminary investigation of iron protoporphyrin SAMs on platinum electrodes by surface enhanced vibrational spectroscopies[J]. Journal of Electrochemistry(电化学), 2010, 16(3): 273-278.
[77] Quirk A, Unni B, Burgess I J. Surface enhanced infrared studies of 4-methoxypyridine adsorption on gold film electrodes[J]. Langmuir, 2016, 32(9): 2184-2191.
[78] Krug K, Liu Y F, Uchida T, et al. Effects of electrode potential on the adsorption behavior of TBPS on an Au surface[J]. Electrochimica Acta, 2017, 235: 242-250.
[79] Alvarez-Malmagro J, Rueda M, Prieto F. In situ surface-enhanced infrared spectroscopy study of adenine-thymine co-adsorption on gold electrodes as a function of the pH[J]. Journal of Electroanalytical Chemistry, 2018, 819: 417-427.
[80] Kokaislova A, Parchansky V, Matejka P. Surface-enhanced infrared spectra of nicotinic acid and pyridoxine on copper substrates: What is the effect of temperature and deposition conditions?[J]. Journal of Physical Chemistry C, 2015, 119(47): 26526-26539.
[81] Motobayashi K, Tomioka R, Uchida T, et al. Effect of hydrogen on the orientation of cinchonidine adsorbed on platinum: An ATR-SEIRAS study[J]. Chemistry Letters, 2015, 44(6): 770-772.
[82] Nishi N, Minami K, Motobayashi K, et al. Interfacial structure at the quaternary ammonium-based ionic liquids|gold electrode interface probed by surface-enhanced infrared absorption spectroscopy: Anion dependence of the cationic behavior[J]. Journal of Physical Chemistry C, 2017, 121(3): 1658-1666.
[83] Chen Y X, Miki A, Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. Journal of the American Chemical Society, 2003, 125(13): 3680-3681.
[84] Yang Y Y, Ren J, Li Q X, et al. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study[J]. ACS Catalysis, 2014, 4(3): 798-803.
[85] Matsui T, Suzuki S, Katayama Y, et al. In situ attenuated total reflection infrared spectroscopy on electrochemical ammonia oxidation over Pt electrode in alkaline aqueous solutions[J]. Langmuir, 2015, 31(42): 11717-11723.
[86] Kunimatsu K, Senzaki T, Samjeské G, et al. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy[J]. Electrochimica Acta, 2007, 52(18): 5715-5724.
[87] Kodama K, Motobayashi K, Shinohara A, et al. Effect of the side-chain structure of perfluoro-sulfonic acid ionomers on the oxygen reduction reaction on the surface of Pt[J]. ACS Catalysis, 2018, 8(1): 694-700.
[88] Kunimatsu K, Uchida H, Osawa M, et al. In situ infrared spectroscopic and electrochemical study of hydrogen electro-oxidation on Pt electrode in sulfuric acid[J]. Journal of Electroanalytical Chemistry, 2006, 587(2): 299-307.
[89] Wuttig A, Yaguchi M, Motobayashi K, et al. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity[J]. Proceedings of the National Academy of Sciences, 2016, 113(32): E4585-E4593.
[90] Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017, 139(10): 3774-3783.
[91] Zhu S Q, Jiang B, Cai W B, et al. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces[J]. Journal of the American Chemical Society, 2017, 139(44): 15664-15667.
[92] Dunwell M, Yang X, Setzler B P, et al. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy[J]. ACS Catalysis, 2018, 8(5): 3999-4008.
[93] Dunwell M, Yan Y S, Xu B J. In situ infrared spectroscopic investigations of pyridine-mediated CO2 reduction on Pt electrocatalysts[J]. ACS Catalysis, 2017, 7(8): 5410-
5419.
[94] Papasizza M, Cuesta A. In situ monitoring using ATRSEIRAS of the electrocatalytic reduction of CO2 on Au in an ionic liquid/water mixture[J]. ACS Catalysis, 2018, 8(7): 6345-6352.
[95] Vivek J P, Berry N, Papageorgiou G, et al. Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy[J]. Journal of the American Chemical Society, 2016, 138(11): 3745-3751.
[96] Yao Y, Zhu S Q, Wang H J, et al. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces[J]. Journal of the American Chemical Society, 2018, 140(4): 1496-1501.
[97] Wang H, Jiang B, Zhao T T, et al. Electrocatalysis of ethylene glycol oxidation on bare and bimodified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation[J]. ACS Catalysis, 2017, 7(3): 2033-2041.
[98] Jarzembski A, Shaskey C, Park K. Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials[J]. Frontiers in Energy, 2018, 12(1): 43-
71.
[99] Kraack J P, Hamm P. Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy[J]. Chemical Reviews, 2017, 117(16): 10623-10664. |