[1] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
[2] Zhang N(张宁), Liu Y C(刘永畅), Chen C C(陈程成), et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2015, 31(9): 1739-1750.
[3] Luo W, Shen F, Bommier C, et al. Na-ion battery anodes: Materials and electrochemistry[J]. Accounts of Chemical Research, 2016, 49(2): 231-240.
[4] Kundu D, Talaie E, Duffort V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3431-3448.
[5] Kim H, Kim H, Ding Z, et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(19): 1600943.
[6] Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
[7] Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
[8] Han M H, Gonzalo E, Singh G, et al. A comprehensive review of sodium layered oxide: Powerful cathode for Na-ion battery[J]. Energy & Environmental Science, 2014, 8(1): 81-102.
[9] Delmas C, Braconnier J J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3(8): 165-169.
[10] Fang Y J(方永进), Chen C X(陈重学), Ai X P(艾新平), et al. Recent developments in cathode materials for Na ion batterie[J]. Acta Physico-Chimica Sinica(物理化学学报), 2017, 33(1): 211-241.
[11] Fang Y, Yu X Y, Lou X W. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres[J]. Angewandte Chemie-International Edition, 2017, 56(21): 5801-5805.
[12] Su D W, Wang C Y, Ahn H J, et al. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance[J]. Chemistry-A European Journal, 2013, 19(33): 10884-10889.
[13] Zhao J, Zhao L W, Chihara K, et al. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries[J]. Journal of Power Sources, 2013, 244(5): 752-757.
[14] Vassilaras P E, Ma X H, Li X, et al. Electrochemical properties of monoclinic NaNiO2[J]. Journal of The Electrochemical Society, 2012, 160(2): A207-A211.
[15] Zhang X, Zhang Z H, Yao S, et al. An effective method to screen sodium-based layered materials for sodium ion batteries[J]. NPJ Computational Materials, 2018, 4: UNSP13.
[16] Yabuuchi N, Kajiyama M, Iwatate J, et al. P2-type Nax[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-517.
[17] Chen X Q, Zhou X L, Hu M, et al. Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20708-20714.
[18] Guo S H, Liu P, Yu H J, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2015, 54(20): 5894-5899.
[19] Yu C Y, Park J S, Jung H G, et al. NaCrO2 cathode for high rate sodium-ion batteries[J]. Energy & Environmental Science, 2015, 8(7): 2019-2026.
[20] Guo S H, Li Q, Liu P, et al. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J]. Nature Communications, 2017, 8(1): 135.
[21] Zhan P, Wang S, Yuan Y, et al. Facile synthesis of nano-rod-like single crystalline Na0.44MnO2 for high performance sodium-ion batteries[J]. Journal of The Electrochemical Society, 2015, 162(6): A1028-A1032.
[22] Xu S Y, Wang Y S, Ben L B, et al. Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2 designed by a new strategy as a cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(22): 1501156.
[23] Liu Q, Zhe H, Chen M, et al. Multi-angular rod-shape Na0.44MnO2 as cathode materials with high-rate and long-life for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3644-3652.
[24] Guo S H, Yu H J, Liu D Q, et al. A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries[J]. Chemical Communications, 2014, 50(59): 7998-8001.
[25] Jiang X L, Liu S, Xu H Y, et al. Tunnel-structured Na0.54Mn0.50Ti0.51O2 and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries[J]. Chemical Communications, 2015, 51(40): 8480-8483.
[26] Zhu Y J, Xu Y H, Liu Y H, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780-787.
[27] Oh S M, Myung S T, Hassoun J, et al. Reversible NaFePO4 electrode for sodium secondary batteries[J]. Electrochemistry Communications, 2012, 22(22): 149-152.
[28] Galceran M, Saurel D, Acebedo B, et al. The mechanism of NaFePO4 (de)sodiation determined by in situ X-ray diffraction[J]. Physical Chemistry Chemical Physics, 2014, 16(19): 8837-8842.
[29] Moreau P, Guyomard D, Gaubicher J, et al. Structure and stability of sodium intercalated phases in olivine FePO4[J]. Chemistry of Materials, 2010, 22(14): 4126-4128.
[30] Li C, Miao X, Chu W, et al. Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8265-8271.
[31] Rahman M M, Sultana I, Mateti S, et al. Maricite NaFePO4/C/graphene: a novel hybrid cathode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(32): 16616-16621.
[32] Kim J, Seo D H, Kim H, et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(2): 540-545.
[33] Liu Y C, Zhang N, Wang F F, et al. Approaching the downsizing limit of maricite NaFePO4 towards high-performance cathode for sodium-ion batteries[J]. Advanced Fun-
ctional Materials, 2018, 28: 1801917.
[34] Zhu C, Song K, van Aken P A, et al. Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes[J]. Nano Letters, 2013, 14(4): 2175-2180.
[35] Jian Z L, Han W Z, Lu X, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries[J]. Advanced Energy Materials, 2013, 3(2): 156-160.
[36] Jian Z L, Yuan C C, Han W Z, et al. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2014, 24(27): 4265-4272.
[37] Xu Y N, Wei Q L, Xu C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode[J]. Advanced Energy Materials, 2016, 6(14): UNSP 1600389.
[38] Guo D L, Qin J W, Yin Z G, et al. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries[J]. Nano Energy, 2018, 45: 136-147.
[39] Li H, Yu X Q, Bai Y, et al. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9578-9586.
[40] Aragon M J, Lavela P, Ortiz G F, et al. Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for na-ion batteries[J]. Journal of The Electrochemical Society, 2015, 162(2): A3077-A3083.
[41] Guo J Z, Wang P F, Wu X L, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance[J]. Advanced Materials, 2017, 29(33): 1701968.
[42] Sheng J Z, Zang H, Tang C J, et al. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries[J]. Nano Energy, 2016, 24: 130-138.
[43] Barpanda P, Ye T, Nishimura S I, et al. Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications, 2012, 24(10): 116-119.
[44] Kim H, Shakoor R A, Park C, et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study[J]. Advanced Functional Materials, 2013, 23(9): 1147-1155.
[45] Barpanda P, Ye T, Avdeev M, et al. A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(13): 4194-4197.
[46] Ha K H, Woo S H, Mok D, et al. Batteries: Na4-αM2+α/2-(P2O7)2 (2/3≤α≤7/8, M=Fe, Fe0.5Mn0.5, Mn): A promising sodium ion cathode for Na-ion batteries[J]. Advanced Energy Materials, 2013, 3(6): 1370023.
[47] Chen M, Chen L, Hu Z, et al. Carbon-coated Na3.32Fe2.34-(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries[J]. Advanced Materials, 2017, 29(21): 1605535.
[48] Jin T, Liu Y, Li Y, et al. Electrospun NaVPO4F/C nano-fibers as self-standing cathode material for ultralong cycle life Na-ion batteries[J]. Advanced Energy Materials, 2017, 79(15): 1700087.
[49] Deng X, Shi W, Sunarso J, et al. A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16280-16287.
[50] Zhao J, Mu L, Qi Y, et al. A phase-transfer assisted solvo-thermal strategy for low-temperature synthesis of Na3(VO1-xPO4)2F1+2x cathodes for sodium-ion batteries[J].Chemical Communications, 2015, 51(33): 7160-7163.
[51] Qi Y, Mu L, Zhao J, et al. Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries[J]. Angewandte ChemieInternational Edition, 2015, 54(34): 9911-9916.
[52] Park Y U, Seo D H, Kim H, et al. A family of high-performance cathode materials for Na-ion batteries, Na3-(VO1-xPO4)2F1+2x(0≤x≤1): Combined first-principles and experimental study[J]. Advanced Functional Materials, 2014, 24: 4603-4614.
[53] Park Y U, Seo D H, Kwon H S, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability[J]. Journal of the American Chemical Society, 2013, 135(37): 13870-13878.
[54] Xiang X D, Lu Q Q, Han M, et al. Superior high-rate capability of Na3(VO0.5)2(PO4)2F2 nanoparticles embedded in porous graphene through the pseudocapacitive effect[J]. Chemical Communications, 2016, 52(18): 3653-3656.
[55] Barpanda P, Oyama G, Nishimura S, et al. A 3.8-V earth-abundant sodium battery electrode[J]. Nature Communications, 2014, 5(5): 4358.
[56] You Y, Wu X L, Yin Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647.
[57] Lee H W, Wang R Y, Pasta M, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nature Communications, 2014, 5: 5280.
[58] Li W J, Chou S L, Wang J Z, et al. Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries[J]. Chemistry of Materials, 2015, 27(6): 1997-2003.
[59] Lu Y, Wang L, Cheng J, et al. Cheminform abstract: prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544-6546.
[60] Wu X Y, Wu C H, Wei C X, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5393-5399.
[61] Wu X Y, Deng W W, Qian J F, et al. Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(35): 10130-10134.
[62] Qian J F(钱江锋), Zhou M(周敏), Cao Y L(曹余良), et al. NaxMyFe(CN)6(M=Fe,Co,Ni): A new class of cathode materials for sodium ion batteries[J]. Journal of Electrochemistry(电化学), 2012, 18(2): 108-112.
[63] Wu X Y, Cao Y L, Ai X P, et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry[J]. Electrochemistry Communications, 2013, 31: 145-148.
[64] Wu X Y, Sun M Y, Shen Y F, et al. Cheminform abstract: Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry[J]. Cheminform, 2014, 45(22): 407-411.
[65] Sun J Z, Dong Y, Kong C Y. Synthesis of Na2MnFe(CN)6 and its application as cathode material for aqueous rechargeable sodium-ion battery[J]. Journal of New Materials for Electrochemical Systems, 2016, 19(3): 117-179.
[66] Wu X Y, Luo Y, Sun M Y, et al. Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J]. Nano Energy, 2015, 13: 117-123.
[67] Wan M, Tang Y, Wang L L, et al. Core-shell hexacyanoferrate for superior Na-ion batteries[J]. Journal of Power Sources, 2016, 329: 290-296.
[68] Li W J, Chou S L, Wang J Z, et al. Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach[J]. Nano Energy, 2015, 13: 200-207.
[69] Meng Q, Zhang W, Hu M, et al. Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries[J]. Chemical Communications, 2015, 52(9): 1957-1960.
[70] Huang Y X, Xie M, Zhang J T, et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries[J]. Nano Energy, 2017, 39: 273-283.
[71] Liu Y C(刘永畅), Chen C C(陈程成), Zhang N(张宁), et al. Research and application of key materials for sodium-ion batteries[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 437-452.
[72] Deng W W, Shen Y F, Qian J F, et al. A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21095-21099.
[73] Wang S, Wang L, Zhu Z, et al. All organic sodium-ion batteries with Na4C8H2O6[J]. Angewandte Chemie-International Edition, 2014, 56(23): 5892-5896.
[74] Gocheva I D, Nishijima M, Doi T, et al. Mechanochemical synthesis of NaMF3(M=Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries[J]. Journal of Power Sources, 2009, 187(1): 247-252.
[75] Kitajou A, Komatsu H, Chihara K, et al. Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery[J]. Journal of Power Sources, 2012, 198(198): 389-392.
[76] Hou H S, Qiu X Q, Wei W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898.
[77] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie-International Edition, 2014, 53(38): 10169-10173.
[78] Li Y, Hu Y S, Titirici M M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659.
[79] Bommier C, Surta T W, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892.
[80] Tang K, Fu L, White R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials, 2012, 2(7): 873-877.
[81] Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787.
[82] Hou H, Banks C E, Jing M, et al. Sodium-ion batteries: carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J]. Advanced Materials, 2015, 27(47): 7861-7866.
[83] Wang S Q, Xia L, Yu L, et al. Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J]. Advanced Energy Materials, 2016, 6(7): 1502217.
[84] Yang J Q, Zhou X L, Wu D H, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29(6): 1604108.
[85] Hou H S, Shao L D, Zhang Y, et al. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries[J]. Advanced Science, 2017, 4(1): 1600243.
[86] Wang M, Yang Z Z, Li W H, et al. Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network[J]. Small, 2016, 12(19): 2559-2566.
[87] Yan Y, Yin Y X, Guo Y G, et al. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4(8): 1079-1098.
[88] Liu Y, Fan L Z, Jiao L F. Graphene highly scattered in porous carbon nanofibers: A binder-free and high-performance anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 5(4): 1698-1705.
[89] Lao M M, Zhang Y, Luo W B, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700622.
[90] Liu Y C, Zhang N, Jiao L F, et al. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries[J]. Advanced Functional Materials, 2015, 25(2): 214-220.
[91] Liu Y C, Zhang N, Jiao L F, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials, 2015, 27(42): 6702-6707.
[92] Zhou X L, Zhong Y R, Yang M, et al. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability[J]. Chemical Communications, 2014, 50(85): 12888-12891.
[93] Darwiche A, Marino C, Sougrati M T, et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism[J]. Journal of the American Chemical Society, 2013, 135(51): 20805-20811.
[94] Liu J, Yu L, Wu C, et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries[J]. Nano Letters, 2017, 17(3): 2034-2042.
[95] Xiao L F, Cao Y L, Xiao J, et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J]. Chemical Communications, 2012, 48(27): 3321-3323.
[96] Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(17): 4633-4636.
[97] Song J X, Yu Z X, Gordin M L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J]. Nano Letters, 2014, 14(11): 6329-6335.
[98] Zhu Y J, Wen Y, Fan X L, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9(3): 3254-3264.
[99] Liu Y C, Zhang N, Liu X B, et al. Red phosphorus nano-particles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2017, 9: 170-178.
[100] Kume T, Iwai Y, Sugiyama T, et al. NaSi and Si clathrate prepared on Si substrate[J]. Physica Status Solidi, 2013, 10(12): 1739-1741.
[101] Zhang L, Hu X L, Chen C J, et al. In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage[J]. Advanced Materials, 2017, 29(5): 1604708.
[102] Zhang N, Han X P, Liu Y C, et al. 3D porous γ-Fe2O3@C nanocomposite as high-performance anode material of Na-Ion batteries[J]. Advanced Energy Materials, 2015, 5(5): 1401123.
[103] Liu Y, Wang F, Fan L Z. Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability[J]. Nano Research, 2018, 11: DOI: 10.1007/s12274-018-1985-0.
[104] Liu Y C, Zhang N, Yu C M, et al. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries[J]. Nano Letters, 2016, 16(5): 3321-3328.
[105] Wang X J, Liu Y C, Wang Y J, et al. CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties[J]. Small, 2016, 12(35): 4865-4872.
[106] Qin J, Zhao N Q, Shi C S, et al. Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan highrate anode material for lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(22): 10946-10956.
[107] Li N, Liao S, Sun Y, et al. Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability[J]. Journal of Materials Chemistry A, 2015, 3(11): 5820-5828.
[108] Lu Y Y, Zhao Q, Zhang N, et al. Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres[J]. Advanced Functional Materials, 2016, 26(6): 911-918.
[109] Liu Y C, Kang H Y, Jiao L F, et al. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries[J]. Nano-scale, 2015, 7(4): 1325-1332.
[110] Liu Z M, Lu T C, Song T, et al. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1576-1580.
[111] Liu Y C, Zhang N, Kang H Y, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry, 2015, 21(33): 11878-11884.
[112] Hou H S, Jing M J, Huang Z D, et al. One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19362-19369.
[113] Qu B H, Ma C Z, Ji G, et al. Layered SnS2-reduced graphene oxide composite-a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26(23): 3854-3859.
[114] Zhao Y, Goncharova L V, Lushington A, et al. Superior stable and long life sodium metal anodes achieved by atomic layer deposition[J]. Advanced Materials, 2017, 29(18): 1606663.
[115] Song J, Jeong G, Lee A J, et al. Dendrite-free polygonal Na deposition with excellent interfacial stability in a NaAlCl4-2SO2 inorganic electrolyte[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27206-27214.
[116] Lee J, Lee Y, Lee J, et al. Ultraconcentrated sodium bis-(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3723-3732.
[117] Cao R, Mishra K, Li X L, et al. Enabling room temperature sodium metal batteries[J]. Nano Energy, 2016, 30: 825-830.
[118] Luo W, Lin C F, Zhao O, et al. Ultrathin surface coating enables the stable sodium metal anode[J]. Advanced Energy Materials, 2017, 7(2): 1601526.
[119] Kim Y J, Lee H, Noh H, et al. Enhancing the cycling stability of sodium metal electrode by building an inorganic/organic composite protective layer[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6000-6006.
[120] Zhao Y, Goncharova L V, Zhang Q, et al. Inorganic-organic coating via molecular layer deposition enables long life sodium metal anode[J]. Nano Letters, 2017, 17(9): 5653-5659.
[121] Luo W, Zhang Y, Xu S M, et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable na metal anode[J]. Nano Letters, 2017, 17(6): 3792-3797.
[122] Chi S S, Qi X G, Hu Y S, et al. 3D flexible carbon felt host for highly stable sodium metal anodes[J]. Advanced Energy Materials, 2018, 8: 1702764.
[123] Wang T S, Liu Y C, Lu X Y, et al. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J]. Energy Storage Materials, 2018, 15: 274-281.
[124] Liu S, Tang S, Zhang X Y, et al. Porous Al current collector for dendrite-free Na metal anodes[J]. Nano Letters, 2017, 17(9): 5862-5868.
[125] Lu Y Y, Zhang Q, Han M, et al. Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires[J]. Chemical Communications, 2017, 53(96): 12910-12913.
[126] Ni J F, Fu S D, Wu C, et al. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering[J]. Advanced Energy Materials, 2016, 6(11): 1502568.
[127] Wang Y S, Yu X Q, Xu S Y, et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communications, 2013, 4(4): 2365.
[128] Sun Y, Zhao L, Pan H L, et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communications, 2013, 4(5): 1870.
[129] Li Q, Guo S H, Zhu K, et al. A postspinel anode enabling sodium-ion ultralong cycling and superfast transport via 1D channels[J]. Advanced Energy Materials, 2017, 7(21): 1700361.
[130] Wu X Y, Ma J, Ma Q D, et al. A spray drying approach for the synthesis of Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(25): 13193-13197.
[131] Wu X Y, Jin S F, Zhang Z Z, et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances, 2015, 1(8): 1500330.
[132] Zhu N(朱娜), Wu F(吴锋), Wu C(吴川), et al. Recent advances of electrolytes for sodium-ion batteries[J]. Energy Storage Science and Technology(储能科学与技术), 2016, 5(3): 285-291.
[133] Ponrouch A, Marchante E, Courty M, et al. In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9): 8572-8583.
[134] Jang J Y, Kim H, Lee Y, et al. Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries[J]. Electrochemistry Communications, 2014, 44(7): 74-77.
[135] Kim H, Hong J, Yoon G, et al. Sodium intercalation chemistry in graphite[J]. Energy & Environmental Science, 2015, 8(10): 2963-2969.
[136] Hu Z, Zhu Z Q, Cheng F Y, et al. Pyrite FeS for high-rate and long-life rechargeable sodium batteries[J]. Energy & Environmental Science, 2015, 8(4): 1309-1316.
[137] Li Z, Young D, Xiang K, et al. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/
Na0.44MnO2 system[J]. Advanced Energy Materials, 2013, 3(3): 290-294.
[138] Armand M B, Chabagno J M, Duclot M J. Poly-ethers as solid electrolytes[C]// Intenational conference on fast ion transport in solids, electrodes and electrolytes. USA: Lake Geneva, WI. 1979: 131-136.
[139] Liu J(刘晋), Xu J Y(徐俊毅), Lin Y(林月), et al. All-
solid-state lithium ion battery: Research and industrial prospects[J]. Acta Chimica Sinica(化学学报), 2013, 71: 869-878.
[140] Fan L Z(范丽珍), Chen L(陈龙), Chi S S(池上森), et al. Research progress of key materials for all-solid-state Lithium batteries[J]. Journal of the Chinese Ceramic Society(硅酸盐学报), 2018, 46(1): 1-14.
[141] Qi X G, Ma Q, Liu L L, et al. Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolytes for sodium-ion batteries[J]. ChemElectroChem, 2016, 3(11): 1741-1745.
[142] Ma Q, Liu J J, Qi X G, et al. A new Na[(FSO2)-(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries[J]. Journal of Materials Chemistry A, 2017, 5(2): 7738-7743.
[143] Ni'Mah Y L, Cheng M Y, Cheng J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381.
[144] Abdullah O G, Aziz S B, Saber D R, et al. Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes[J]. Journal of Materials Science Materials in Electronics, 2017, 28(12): 8928-8936.
[145] Hong H. Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182.
[146] Goodenough J B, Hong Y P, Kafalas J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220.
[147] Khakpour Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2-xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electro-
chimica Acta, 2016, 196: 337-347.
[148] Zhang Z Z, Zhang Q H, Shi J A, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2016, 7(4): 1601196.
[149] Zhang L, Zhang D C, Yang K, et al. Vacancy-contained tetragonal Na3SbS4 superionic conductor[J]. Advanced Science, 2016, 3(10): 1600089.
[150] Richards W D, Tsujimura T, Miara L J, et al. Design and synthesis of the superionic conductor Na10SnP2S12[J]. Nature Communications, 2016, 7: 11009.
[151] Udovic T J, Matsuo M, Unemoto A, et al. Sodium superionic conduction in Na2B12H12[J]. Chemical Communications, 2014, 50(28): 3750-3752.
[152] Duchêne L, Kühnel R S, Rentsch D, et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture[J]. Chemical Communications, 2017, 53(30): 4195-4198.
[153] Kim J K, Lim Y J, Kim H, et al. A hybrid solid electrolyte for flexible solid-state sodium batteries[J]. Energy & Environmental Science, 2015, 8(12): 3589-3596.
[154] Zhang Z, Zhang Q, Ren C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 15823-15828. |