[1] Ma L(马亮), Cai W W(蔡卫卫), Zhang J(张晶), et al. Optimization of membrane electrode assembly in air-breathing direct methanol fuel cell[J]. Journal of Electrochemsitry(电化学), 2010, 16(2): 131-136.
[2] Hong Y H, Zhou Z Y, Zhan M, et al. Liquid-inlet online electrochemical mass spectrometry for the in operando monitoring of direct ethanol fuel cells[J]. Electrochemistry Communications, 2018, 87: 91-95.
[3] Liu D, Xie M, Wang C, et al. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation[J]. Nano Research, 2016, 9(6): 1590-1599.
[4] Benipal N, Qi J, Liu Q, et al. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells[J]. Applied Catalysis B: Environmental, 2017, 210: 121-130.
[5] Cosnier S, Le Goff A, Holzinger M. Towards glucose biofuel cells implanted in human body for powering artificial organs: Review[J]. Electrochemistry Communications, 2014, 38: 19-23.
[6] Liu W, Mu W, Deng Y L. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J]. Angewandte Chemie International Edition, 2014, 53(49): 13558-13562.
[7] Senthilkumar N, Gnana kumar G, Manthiram A. 3D hierarchical core-shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells[J]. Advanced Energy Materials, 2018, 8(6): 1702207.
[8] Nováková L, Solich P, Solichová D. HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids[J]. TrAC Trends in Analytical Chemistry, 2008, 27(10): 942-958..
[9] Fujiwara N, Yasuda K, Ioroi T, et al. Direct polymer electrolyte fuel cells using L-ascorbic acid as a fuel[J]. Electrochemical and Solid-State Letters, 2003, 6(12): A257.
[10] Fujiwara N, Yamazaki S I, Siroma Z, et al. L-Ascorbic acid as an alternative fuel for direct oxidation fuel cells[J]. Journal of Power Sources, 2007, 167(1): 32-38.
[11] Mondal S K, Raman R K, Shukla A K, et al. Electrooxidation of ascorbic acid on polyaniline and its implications to fuel cells[J]. Journal of Power Sources, 2005, 145(1): 16-20.
[12] Homma T, Kondo M, Kuwahara T, et al. Immobilization of acid phosphatase on a polyaniline/poly(acrylic acid) composite film for use as the anode of a fuel cell driven with L-ascorbic acid 2-phosphate[J]. Polymer Journal, 2012, 44(11): 1117-1122.
[13] Li X D, Huang M G, Huang B, et al. Fabrication and catalytic properties of highly ordered single-walled carbon nanotube arrays coated with photoelectro-polymerized bisphenol A films for visible-light-enhanced ascorbate fuel cells[J]. Journal of Electroanalytical Chemistry, 2017, 803: 117-124.
[14] Fujiwara N, Yamazaki S, Siroma Z, et al. Direct oxidation of l-ascorbic acid on a carbon black electrode in acidic media and polymer electrolyte fuel cells[J]. Electrochemistry Communications, 2006, 8(5): 720-724.
[15] Mogi H, Fukushi Y, Koide S, et al. A flexible ascorbic acid fuel cell with a microchannel fabricated using MEMS techniques[M]. Journal of Physics: Conference Series, 2013, 476: 012065.
[16] Hoshi K, Muramatsu K, Sumi H, et al. Miniaturized ascorbic acid fuel cells with flexible electrodes made of graphene-coated carbon fiber cloth[J]. Japanese Journal of Applied Physics, 2016, 55(4): 04EC11.
[17] Uhm S, Choi J, Chung S T, et al. Electrochemically oxidized carbon anode in direct l-ascorbic acid fuel cells[J]. Electrochimica Acta, 2007, 53(4): 1731-1736.
[18] Choun M, Lee H J, Lee J. Positively charged carbon electrocatalyst for enhanced power performance of L-ascorbic acid fuel cells[J]. Journal of Energy Chemistry, 2016, 25(5): 793-797.
[19] Sathe B R. A scalable and facile synthesis of carbon nanospheres as a metal free electrocatalyst for oxidation of l-ascorbic acid: Alternate fuel for direct oxidation fuel cells[J]. Journal of Electroanalytical Chemistry, 2017, 799: 609-616.
[20] Deutsch J C. Dehydroascorbic acid[J]. Journal of Chromatography A, 2000, 881(1): 299-307.
[21] Muneeb O, Do E, Tran T, et al. A direct ascorbate fuel cell with an anion exchange membrane[J]. Journal of Power Sources, 2017, 351: 74-78.
[22] Majari Kasmaee L, Gobal F. A preliminary study of the electro-oxidation of l-ascorbic acid on polycrystalline silver in alkaline solution[J]. Journal of Power Sources, 2010, 195(1): 165-169.
[23] Yao R(姚瑞), Song Y J(宋玉江), Li H Q(李焕巧), et al. Preparation parameters optimization and electrocatalytic properties of supported Au nanoparticles[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 147-156.
[24] Cong Y Y, Yi B L, Song Y J. Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts[J]. Nano Energy, 2018, 44: 288-303.
[25] Li J, Liu H Y, Lv Y, et al. Influence of counter electrode material during accelerated durability test of non-precious metal electrocatalysts in acidic medium[J]. Chinese Journal of Catalysis, 2016, 37(7): 1109-1118.
[26] Bai Y Z, Yi B L, Li J, et al. A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework[J]. Chinese Journal of Catalysis, 2016, 37(7): 1127-1133.
[27] Naseh M V, Khodadadi A A, Mortazavi Y, et al. Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment[J]. Carbon, 2010, 48(5): 1369-1379.
[28] Pinchas S, Laulicht I. Infrared spectra of labelled compounds[M]. London: Academic Press, 1971.
[29] Tan L S(谭力盛), Pan J(潘婧), Li Y(李瑶), et al. Influence of electrode hydrophobicity on performance of alkaline polymer electrolyte fuel cells[J]. Journal of Electro-
chemsitry(电化学), 2013, 19(3): 199-203.
[30] Berg R W. Investigation of L(+)-ascorbic acid with Raman spectroscopy in visible and UV light[J]. Applied Spectroscopy Reviews, 2014, 50(3): 193-239.
[31] Yan J B, Zhao Z, Shang L, et al. Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell[J]. Journal of Power Sources, 2016, 319: 124-130.
[32] Shang L, Wu W M, Zhao Z, et al. Oxygen-reduction reaction on preferred oriented Gd0.1Ce0.9O2-δ films[J]. The Journal of Physical Chemistry C, 2018, 122(15): 8396-8405.
[33] Lee C G. Temperature effect on the electrode reactions in a molten carbonate fuel cell[J]. Journal of Electroanalytical Chemistry, 2018, 810: 48-54.
|