[1] Ouyang M G(欧阳明高). Technology strategy and R&D progress of automotive new energy and powertrain[J].Transactions of CSICE(内燃机学报), 2008(s1): 107-114.
[2] Wang C(王诚), Zhao B(赵波), Zhang J B(张剑波). Progress of membrane electrode assembly technology for proton exchange membrane fuel cell[J]. Science & Technology Review(科技导报), 2016, 34(6): 62-68.
[3] Ohma A, Mashio T, Sato K, et al. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan[J]. Electrochimica Acta, 2011, 56(28): 10832-10841.
[4] Huang J, Li Z, Zhang J B. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer[J]. Frontiers in Energy, 2017, 11(3): 334-364.
[5] Jiang S F(蒋尚峰), Yi B L(衣宝廉). Progress of order-structured membrane electrode assembly[J]. Journal of electrochemistry(电化学), 2016, 22(3): 213-218.
[6] Cho Y H, Park H S, Cho Y H, et al. Effect of platinum amount in carbon supported platinum catalyst on performance of polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2007, 172(1): 89-93.
[7] Litster S, Mclean G. PEM fuel cell electrodes[J]. Journal of Power Sources, 2004, 130(1): 61-76.
[8] Ticianelli E A. Methods to advance technology of proton-exchange membrane fuel-cells[J]. Journal of The Electrochemical Society, 1988, 135(9): 2209-2214.
[9] Paganin V A, Ticianelli E A, Gonzalez E R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells[J]. Journal of Applied Electrochemistry, 1996, 26(3): 297-304.
[10] O’Hayre R, Lee S J, Cha S W, et al. A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading[J]. Journal of Power Sources, 2002, 109(2): 483-493.
[11] Fofana D, Hamelin J, Bénard P. Modelling and experimental validation of high performance low platinum multilayer cathode for polymer electrolyte membrane fuel cells (PEMFCs)[J]. International Journal of Hydrogen Energy, 2013, 38(24): 10050-10062.
[12] Debe M K, Schmoeckel A, Hendricks S, et al. Durability aspects of nanostructured thin film catalysts for PEM fuel cells[J]. ECS Transactions, 2006, 1(8): 51-66.
[13] Tian Z Q, Lim S H, Poh C K, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214.
[14] Park J H, Ju Y W, Park S H, et al. Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1229-1236.
[15] Zhang W, Brodt M W, Pintauro P N. Nanofiber cathodes for low and high humidity hydrogen fuel cell operation[J]. ECS Transactions, 2011, 41(1): 891-899.
[16] Si D, Zhang S, Huang J, et al. Electrochemical characterization of pre-conditioning process of electrospun nanofiber electrodes in polymer electrolyte fuel cells[J]. Fuel Cells, 2018, 18(5): 576-585.
[17] Lu Y X, Du S F, Steinberger-Wilckens R. One dimensional nanostructured electrocatalyst for polymer electrolyte membrane fuel cell—A review[J]. Applied Catalysis B: Environmental, 2016, 199: 292-314.
[18] van der Vliet D F, Wang C, Tripkovic D, et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology[J]. Nature Materials, 2012, 11(12): 1051-1058.
[19] Zhang S S, Yuan X Z, Hin J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2): 588-600.
[20] Brodt M, Wycisk R, Pintauro P N. Nanofiber electrodes with low platinum loading for high power hydrogen/air PEM fuel cells[J]. Journal of The Electrochemical Society, 2013, 160(8): F744-F749.
[21] Park Y C, Tokiwa H, Kakinuma K, et al. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells[J]. Journal of Power Sources, 2016, 315:179-191.
[22] Debe M K. Nanostructured thin film electrocatalysts for PEM fuel cells - A tutorial on the fundamental characteristics and practical properties of NSTF catalysts[M]//Editors. Zawodzinski T, Mukerjee S, Strasser P. Tutorials on Electrocatalysis in Low Temperature Fuel Cells, ECS Transactions, 2012, 45(2): 47-68.
[23] Zeng Y, Shao Z, Zhang H, et al. Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells[J]. Nano Energy, 2017, 34: 344-355.
[24] Pintauro P N. Electrospun nanofiber cathode for hydrogen/air fuel cells[C]//ECS 220th ECS Meeting, Boston, October 9-14, 2011.
[25] Brodt M, Han T, Dale N, et al. Fabrication, in-situ performance, and durability of nanofiber fuel cell electrodes[J]. Journal of The Electrochemical Society, 2015, 162(1): F84-F91.
[26] Zhang W, Pintauro P N. High-performance nanofiber fuel cell electrodes[J]. Chemsuschem, 2011, 4(12):1753-1757.
[27] Slack J J, Wycisk R, Dale N, et al. Electrospun nanofiber fuel cell MEA cathodes with PtCo/C catalyst[J]. ECS Transactions, 2017, 80(8): 829-837.
[28] Brodt M, Wycisk R, Dale N, et al. Power output and durability of electrospun fuel cell fiber cathodes with PVDF and Nafion/PVDF binders[J]. Journal of The Electrochemical Society, 2016, 163(5): F401-F410.
[29] Brodt M, Wycisk R, Pintauro P N, et al. Nanofiber fuel cell electrodes I. Fabrication and performance with commercial Pt/C catalysts[C]//ECS 220th ECS Meeting, San Francisco, California, October 27 - November 1, 2013.
[30] Han T, Dale N, Adjemian K, et al. Nanofiber fuel cell electrodes II. In-situ performance and durability studies[C]//ECS 220th ECS Meeting, San Francisco, California, October 27-November 1, 2013: F84-F91.
[31] Hong S J, Hou M, Xiao Y, et al. Investigation of high-per-formance nanofiber cathode with ultralow platinum for PEM fuel cells[J]. Energy Technology, 2017, 5(8): 1457-1463.
[32] Hong S J, Hou M, Zeng Y C, et al. High-performance low-platinum electrode for proton exchange membrane fuel cells: Pulse electrodeposition of Pt on Pd/C nanofiber mat[J]. ChemElectroChem, 2017, 4(5): 1007-1010.
[33] Hong S J, Hou M, Zhang H J, et al. A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition[J]. Electro-
chimica Acta, 2017, 245: 395-401.
[34] Cavaliere S, Subianto S, Savych I, et al. Dopant-driven nanostructured loose-tube SnO2 architectures: Alternative electrocatalyst supports for proton exchange membrane fuel cells[J]. Journal of Physical Chemistry C, 2013, 117(36): 18298-18307.
[35] Savych I, Subianto S, Nabil Y, et al. Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode[J]. Physical Chemistry Chemical Physics, 2015, 17(26): 16970-16976.
[36] Cavaliere S, Jiménez-Morales I, Ercolano G, et al. Highly stable PEMFC electrodes based on electrospun antimony-doped SnO2[J]. ChemElectroChem, 2016, 2(12): 1966-1973.
[37] Nabil Y, Cavaliere S, Harkness I A, et al. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes[J]. Journal of Power Sources, 2017, 363: 20-26.
[38] Lee J, Yoo J M, Ye Y, et al. Development of highly stable and mass transfer-enhanced cathode catalysts: Support-free electrospun intermetallic FePt nanotubes for polymer electrolyte membrane fuel cells[J]. Advanced Energy Materials, 2015, 5(11): 1402093.
[39] Wang X H, Richey F W, Wujcik K H, et al. Ultra-low platinum loadings in polymer electrolyte membrane fuel cell electrodes fabricated via, simultaneous electrospinning/electrospraying method[J]. Journal of Power Sources, 2014, 264: 42-48.
[40] Wang X H, Richey F W, Wujcik K H, et al. Effect of polytetrafluoroethylene on ultra-low platinum loaded electrospun/electrosprayed electrodes in proton exchange membrane fuel cells[J]. Electrochimica Acta, 2014, 139(26): 217-224.
[41] Reneker D H, Yarin A L, Hao F, et al. Bending instability of electrically charged liquid jets of polymer, solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9): 4531-4547.
[42] Levitt A S, Vallett R, Dion G, et al. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns[J]. Journal of Applied Polymer Science, 2018, 135(25): 46404.
[43] Ding B(丁彬), Yu J Y(俞建勇). Electrospinning and nanofibers[M]. China Textile Publishing House(中国纺织出版社), 2011: 26-59.
[44] Sener A G, Altay A S, Altay F. Effect of voltage on morphology of electrospun nanofibers[C]//International conference on electrical and electronics engineering, December 1-4, 2011, Bursa, Turkey. IEEE, 2011: I-324-I-328.
[45] Zargham S, Bazgir S, Tavakoli A, et al. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber[J]. Journal of Engineered Fabrics & Fibers, 2013, 7(4): 42-49.
[46] Hekmati A H, Rashidi A, Ghazisaeidi R, et al. Effect of needle length, electrospinning distance, and solution concentration on morphological properties of polyamide-6 electrospun nanowebs[J]. Textile Research Journal, 2013, 83(14): 1452-1466.
[47] Chan S, Jankovic J, Susac D, et al. Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: Structure and performance[J]. Journal of Power Sources, 2018, 392(16): 239-250.
[48] Chan S, Jankovic J, Susac D, et al. Electrospun carbon nanofiber catalyst layersfor polymer electrolyte membrane fuel cells: fabrication and optimization[J]. Journal of Materials Science, 53(16): 11633-11647.
[49] Ohma A, Shinohara K, Iiyama A, et al. Membrane and catalyst performance targets for automotive fuel cells by FCCJ Membrane, Catalyst, MEA WG[C]//ECS 220th ECS meeting, Boston, October 9-14, 2011: 775-784.
[50] Zhang G, Shao Z G, Lu W, et al. Core-shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs[J]. Applied Catalysis B Environmental, 2013, 132(12): 183-194.
[51] Huang J, Zhang J B. Theory of impedance response of porous electrodes: simplifications, inhomogeneities, non-stationarities and applications[J]. Journal of The Electrochemical Society, 2016, 163(9): A1983-A2000. |