[1] Gao Y Y(高燕燕), Hou M (侯明), Jiang Y Y(姜永燚), et al. Chemical stability investigations of catalyst layer in PEMFC[J]. Journal of Electrochemistry (电化学), 2018, 24
(3): 227-234.
[2] Akella S H, D E, R S S, et al. Studies on structure property relations of efficient decal substrates for industrial grade membrane electrode assembly development in PEMFC[J]. Scientific Reports, 2018, 8(1): 12082.
[3] Zeng Y C, Guo X Q, Wang Z Q, et al. Highly stable nanostructured membrane electrode assembly based on Pt/Nb2O5 nanobelts with reduced platinum loading for proton exchange membrane fuel cells[J]. 2017, Nanoscale, 9(20): 6910-6919.
[4] Jeong H Y, Yang D S, Han J H, et al. Novel interfacial bonding layers with controlled gradient composition profile for hydrocarbon-based membrane electrode assemblies[J]. Journal of Power Sources, 2018, 398: 1-8.
[5] Rosli R E, Sulong A B, Daud W R W, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9293-9314.
[6] Jeong G, Kim M, Han J, et al. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2016, 323: 142-146.
[7] Luo X(罗鑫), Chen S Z(陈士忠), Wu Y H(吴玉厚), et al. Numerical simulation of output performance in PEMFC [J]. Journal of Electrochemistry (电化学), 2018, 24(2): 182-188.
[8] Sassin M B, Garsany Y, Gould B D, et al. Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells[J]. Analytical Chemistry, 2017, 89(1): 511-518.
[9] Chen G Y, Wang C, Lei Y J, et al. Gradient design of Pt/C ratio and Nafion content in cathode catalyst layer of PEMFCs[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29960-29965.
[10] Zhang B, Cao Y, Li Z, et al. Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications[J]. Electrochimica Acta, 2017, 240: 186-194.
[11] Quartarone E, Angioni S, Mustarelli P. polymer and composite membranes for proton-conducting, high-temperature fuel cells: A critical review[J]. Materials, 2017, 10(7): 687.
[12] Park J S, Shin M S, Kim C S. Proton exchange membranes for fuel cell operation at low relative humidity and intermediate temperature: An updated review[J]. Current Opinion in Electrochemistry, 2017, 5(1): 43-55.
[13] Schaffer J V, Lupatini K N, Machado B, et al. Parameters effect on proton conductivity to obtain chitosan membranes for use as electrolytes in PEMFC[J]. International Journal of Energy Research, 2018, 42(3): 1381-1385.
[14] Koh B S, Yoo J H, Jang E K, et al. Fabrication of highly effective self-humidifying membrane electrode assembly for proton exchange membrane fuel cells via electrostatic spray deposition[J]. Electrochemistry Communications, 2018, 93: 760-80.
[15] Martin S, Garcia-Ybarra P L, Castillo J L. Long-term operation of a proton exchange membrane fuel cell without external humidification[J]. Applied Energy, 2017, 205: 1012-1020.
[16] Hou S Y, Liao S J, Xiong Z, et al. Improvement of proton exchange membrane fuel cell performance in low-humidity conditions by adding hygroscopic agarose powder to the catalyst layer[J]. Journal of Power Sources, 2015, 273: 168-173.
[17] Lee D C, Yang H N, Park S H, et al. Self-humidifying Pt-graphene/SiO2 composite membrane for polymer electrolyte membrane fuel cell[J]. Journal of Membrane Science, 2015, 474: 254-262.
[18] Yang H N, Cho S H, Kim W J. The preparation of self-humidifying Nafion/various Pt-containing SiO2 composite membranes and their application in PEMFC[J]. Journal of Membrane Science, 2012, 421: 318-326.
[19] Lo A Y, Huang C Y, Sung L Y, et al. Low humidifying proton exchange membrane fuel cells with enhanced power and Pt-C-h-SiO2 anodes prepared by electrophoretic deposition[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1303-1310.
[20] Breitwieser M, Moroni R, Schock J, et al. Water management in novel direct membrane deposition fuel cells under low humidification[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11412-11417.
[21] Oh K H, Bae I, Lee H, et al. Silica-embedded hydrogel nanofiller for enhancing low humidity proton conduction of a hydrocarbon-based polymer electrolyte membrane[J]. Journal of Membrane Science, 2017, 543: 106-113.
[22] Park C H, Lee S Y, Hwang D S, et al. Nanocrack-regulated self-humidifying membranes[J]. Nature, 2016, 532(7600): 480-483.
[23] Cha D, Jeon S W, Yang W, et al. Comparative performance evaluation of self-humidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions[J]. Energy, 2018, 150: 320-328.
[24] Lee D C, Yang H N, Park S H, et al. Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell[J]. Journal of Membrane Science, 2014, 452: 20-28.
[25] Yang H N, Lee W H, Choi B S, et al. Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell[J]. Journal of Membrane Science, 2016, 504: 20-28.
[26] Steffy N J, Parthiban V, Sahu A K. Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity[J]. Journal of Membrane Science, 2018, 563: 65-74.
[27] Parnian M J, Rowshanzamir S, Alipour Moghaddam J. Investigation of physicochemical and electrochemical properties of recast Nafion nanocomposite membranes using different loading of zirconia nanoparticles for proton exchange membrane fuel cell applications[J]. Materials Science for Energy Technologies, 2018, 1(2): 146-154.
[28] Ketpang K, Son B, Lee D, et al. Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions[J]. Journal of Membrane Science, 2015, 488: 154-165.
[29] Ketpang K, Oh K, Lim S C, et al. Nafion-porous cerium oxide nanotubes composite membrane for polymer electrolyte fuel cells operated under dry conditions[J]. Journal of Power Sources, 2016, 329: 441-449.
[30] Bakangura E, Wu L, Ge L, et al. Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives[J]. Progress in Polymer Science, 2016, 57: 103-
152.
[31] Sayadi P, Rowshanzamir S, Parnian M J. Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly(ether ether ketone)[J]. Energy, 2016, 94: 292-303.
[32] Bae I, Oh K H, Yun S H, et al. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells[J]. Journal of Membrane Science, 2017, 542: 52-59.
[33] Oh K, Son B, Sanetuntikul J, et al. Polyoxometalate decorated graphene oxide/sulfonated poly(arylene ether ketone) block copolymer composite membrane for proton exchange membrane fuel cell operating under low relative humidity[J]. Journal of Membrane Science, 2017, 541: 386-392.
[34] Bae I, Oh K H, Yun M, et al. Nanostructured composite membrane with cross-linked sulfonated poly(arylene ether ketone)/silica for high-performance polymer electrolyte membrane fuel cells under low relative humidity[J]. Journal of Membrane Science, 2018, 549: 567-574.
[35] Jung U H, Park K T, Park E H, et al. Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO2 particles to catalyst layer[J]. Journal of Power Sources, 2006, 159(1): 529-532.
[36] Lin C L, Hsu S C, Ho W Y. Using SiO2 nanopowders in anode catalyst layer to improve the performance of a proton exchange membrane fuel cell at low humidity[J]. Journal of Materials Science and Chemical Engineering, 2015, 3(1): 72-79.
[37] Huang R H, Chiu T W, Lin T J, et al. Improvement of proton exchange membrane fuel cells performance by coating hygroscopic zinc oxide on the anodic catalyst layer[J]. Journal of Power Sources, 2013, 227: 229-236.
[38] Chao W K, Lee C M, Tsai D C, et al. Improvement of the proton exchange membrane fuel cell (PEMFC) performance at low-humidity conditions by adding hygroscopic γ-Al2O3 particles into the catalyst layer[J]. Journal of Power Sources, 2008, 185(1): 136-142.
[39] Liang H G, Zheng L P, Liao S J. Self-humidifying membrane electrode assembly prepared by adding PVA as hygroscopic agent in anode catalyst layer[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12860-12867.
[40] Liang H G, Dang D, Xiong W, et al. High-performance self-humidifying membrane electrode assembly prepared by simultaneously adding inorganic and organic hygroscopic materials to the anode catalyst layer[J]. Journal of Power Sources, 2013, 241: 367-372.
[41] Hou S Y, Liao S J, Dang D, et al. Self-humidifying membrane electrode assembly prepared by adding microcrystalline cellulose in anode catalyst layer as preserve moisture[J]. International Journal of Hydrogen Energy, 2014, 39(24): 12842-12848.
[42] Chao W K, Lee C M, Tsai D C, et al. Improvement of the proton exchange membrane fuel cell (PEMFC) performance at low-humidity conditions by adding hygroscopic γ-Al2O3 particles into the catalyst layer[J]. Journal of Power Sources, 2008, 185(1): 136-142.
[43] Lin C L, Hsu S C, Ho W Y. Using SiO2 nanopowders in anode catalyst layer to improve the performance of a proton exchange membrane fuel cell at low humidity[J]. Journal of Materials Science and Chemical Engineering, 2015, 3(1): 72-79.
[44] Kim E Y, Yim S D, Bae B, et al. Study of a highly durable low-humidification membrane electrode assembly using crosslinked polyvinyl alcohol for polymer electrolyte membrane fuel cells[J]. Journal of Solid State Electrochemistry, 2016, 20(6): 1723-1730.
[45] Su H N, Xu L M, Zhu H P, et al. Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7874-7880.
[46] Su H N, Yang L J, Liao S J, et al. Membrane electrode assembly with Pt/SiO2/C anode catalyst for proton exchange membrane fuel cell operation under low humidity conditions[J]. Electrochimica Acta, 2010, 55(28): 8894-8900.
[47] Zheng L P, Zeng Q, Liao S J, et al. Highly performed non-humidification membrane electrode assembly prepared with binary RuO2-SiO2 oxide supported Pt catalysts as anode[J]. International Journal of Hydrogen Energy, 2012, 37(17): 13103-13109.
[48] Hou S Y, Chen R, Zou H B, et al. High-performance membrane electrode assembly with multi-functional Pt/SnO2 -SiO2 /C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9197-9203.
[49] Luo F, Liu M R, Chi B, et al. Enhanced durability and self-humidification of platinum catalyst through decoration with SnSi binary oxide[J]. Journal of Applied Electrochemistry, 2018, 48(10): 1163-1173.
[50] Lo A Y, Huang C Y, Sung L Y, et al. Electrophoretic deposited Pt/C/SiO2 anode for self-humidifying and improved catalytic activity in PEMFC[J]. Electrochimica Acta, 2015, 180: 610-615.
[51] Choi I, Lee H, Lee K G, et al. Characterization of self-humidifying ability of SiO2-supported Pt catalyst under low humidity in PEMFC[J]. Applied Catalysis B: Environmental, 2015, 168: 220-227.
[52] Ko Y D, Yang H N, Züttel A, et al. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-
humidifying proton exchange membrane fuel cell[J]. Journal of Power Sources, 2017, 367: 8-16.
[53] Ganesan A, Narayanasamy M. Shunmugavel K self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells[J]. Electrochimica Acta, 2018, 285: 47-59.
[54] Hou S Y, Su H N, Zou H B, et al. Enhanced low-humidity performance in a proton exchange membrane fuel cell by the insertion of microcrystalline cellulose between the gas diffusion layer and the anode catalyst layer[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15613-15621.
[55] Liang H G, Xu R Y, Chen K C, et al. Self-humidifying membrane electrode assembly with dual cathode catalyst layer structure prepared by introducing polyvinyl alcohol into the inner layer[J]. RSC Advances, 2016, 6(2): 1333-1338.
[56] Yang H N, Lee W H, Choi B S, et al. Self-humidifying Pt-C/Pt-TiO2 dual-catalyst electrode membrane assembly for proton-exchange membrane fuel cells[J]. Energy, 2017, 120: 12-19. |