[1]Chen J Z, Xu J L, Zhou S, et al. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors[J]. Nano Energy, 2016, 21(2): 145-153.
[2]Jing M J, Hou H S, Banks C E, et al. Alternating voltage introduced NiCo double hydroxide layered nanoflakes for an asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 227441-22744.
[3]Wang Y H, Wang C C, Cheng W Y, et al. Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material[J]. Carbon, 2014, 69(2): 287-293.
[4]Salunkhe R R, Lin J J, Malgras V, et al. Lrge-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application[J]. Nano Energy, 2015, 11(59): 211-218.
[5]Lang J W(郎俊伟), Zhang X(张旭),Wang R T(王儒涛), et al. Strategies to enhence energy denisty for supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(05):507-532.
[6]Fan Z G, Yan J, Wei T, Zhi L, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density[J].Advanced Functional Materials, 2011, 21(12): 2366-2375.
[7]Rakhi R B, Chen W, Cha D, et al . Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Letters, 2012, 12: 2559-2567.
[8]An C H, Wang W J, Wang Y P, et al. Facile synthesis and superior supercapacitor performances of Ni2P/r GO nanoparticles. RSC Adv. 2013, 3(14): 4628-4633.
[9]Hu Y T, Guan C, Feng G X, et al. Flexible asymmetric supercapacitor based on structure-optimized Mn3O4/reduced graphene oxide nanohybrid paper with high energy and power density[J]. Advanced Functional Materials, 2016, 25(47): 7291-7299.
[10]Wang W, Liu W Y, Zeng Y X, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced Materials, 2015, 27(23): 3572-3578.
|