电化学(中英文) ›› 2016, Vol. 22 ›› Issue (4): 368-381. doi: 10.13208/j.electrochem.160147
• 光电化学及新型太阳能电池近期研究专辑(厦门大学林昌健教授&中国科学院化学研究所李永舫院士主编) • 上一篇 下一篇
朱凯健1,罗文俊1*,关中杰2,温鑫2,邹志刚2,黄维1, 3*
收稿日期:
2016-03-18
修回日期:
2016-04-28
出版日期:
2016-08-29
发布日期:
2016-05-05
通讯作者:
罗文俊,黄维
E-mail:iamwjluo@njtech.edu.cn
基金资助:
国家重点基础研究发展计划(973项目,2015CB932200与2014CB239303)、江苏省高校自然科学研究面上项目(15KJB150010) 、有机电子与信息显示国家重点实验室培育基地开放课题、南京工业大学校内课题的资助.
ZHU Kai-jian1,LUO Wen-jun1*, GUAN Zhong-jie 2, WEN Xin2, ZOU Zhi-gang2, HUANG Wei 1,3*
Received:
2016-03-18
Revised:
2016-04-28
Published:
2016-08-29
Online:
2016-05-05
Contact:
LUO Wen-jun,HUANG Wei
E-mail:iamwjluo@njtech.edu.cn
摘要:
光电化学水分解电池能够将太阳能直接转化为氢能,是一种理想的太阳能利用方式. p-n叠层电池具有理论转换效率高、成本低廉、材料选择灵活等优势,被认为是最有潜力的一类光电化学水分解电池. 然而,目前这类叠层电池的太阳能转化效率还不高,主要原因是单个电极的效率太低. 本文介绍了几种提高光电极分解水性能的方法——减小光生载流子的体相复合、表面复合以及抑制背反应等,同时综述了国内外关于几种p型半导体光阴极的研究进展,如Si、InP、CuIn1-x GaxS(Se)2、Cu2ZnSnS4等. 通过总结,作者提出一种p-Cu2ZnSnS4(CuIn1-xGaxS(Se)2)/n-Ta3N5(Fe2O3) 组装方式,有望获得高效低成本叠层光电化学水分解电池.
中图分类号:
朱凯健,罗文俊,关中杰,温鑫,邹志刚,黄维. 光电化学分解水电池的电极性能提高方法及光阴极研究进展[J]. 电化学(中英文), 2016, 22(4): 368-381.
ZHU Kai-jian,LUO Wen-jun, GUAN Zhong-jie, WEN Xin, ZOU Zhi-gang, HUANG Wei. Photoelectrochemical Water Splitting cells: Methods for Improving Performance of Electrodes and Recent Progress on Photocathodes[J]. Journal of Electrochemistry, 2016, 22(4): 368-381.
[5] Mor G K, Varghese O K, Wilke R H T, et al. p-Type Cu− Ti− O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation[J]. Nano Letters, 2008, 8(7): 1906-1911. [6] Bornoz P, Abdi F F, Tilley S D, et al. A bismuth vanadate–cuprous oxide tandem cell for overall solar water splitting[J]. The Journal of Physical Chemistry C, 2014, 118(30): 16959-16966. [7] Ding C, Qin W, Wang N, et al. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode[J]. Physical Chemistry Chemical Physics, 2014, 16(29): 15608-15614. [8] Jang J W, Du C, Ye Y, et al. Enabling unassisted solar water splitting by iron oxide and silicon[J]. Nature communications, 2015, 6. [9] Kim J H, Kaneko H, Minegishi T, et al. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight[J]. ChemSusChem, 2016, 9(1): 61-66. [18] Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta 3 N 5 photoanodes for water splitting under visible light irradiation[J]. Energy & Environmental Science, 2011, 4(10): 4138-4147. [19] Li Y, Zhang L, Torres-Pardo A, et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency[J]. Nature communications, 2013, 4. [20] Liao M, Feng J, Luo W, et al. Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode[J]. Advanced Functional Materials, 2012, 22(14): 3066-3074. [21] Chen S, Shen S, Liu G, et al. Interface Engineering of a CoOx/Ta3N5 Photocatalyst for Unprecedented Water Oxidation Performance under Visible‐Light‐Irradiation[J]. Angewandte Chemie International Edition, 2015, 54(10): 3047-3051. [22] Liu G, Shi J, Zhang F, et al. A Tantalum Nitride Photoanode Modified with a Hole‐Storage Layer for Highly Stable Solar Water Splitting[J]. Angewandte Chemie International Edition, 2014, 53(28): 7295-7299. [23] Liu G, Fu P, Zhou L, et al. Efficient Hole Extraction from a Hole‐Storage‐Layer‐Stabilized Tantalum Nitride Photoanode for Solar Water Splitting[J]. Chemistry–A European Journal, 2015, 21(27): 9624-9628. [24] Liu G, Ye S, Yan P, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy & Environmental Science, 2016. [25] Cao D, Luo W, Feng J, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction [J]. Energy & Environmental Science, 2014, 7(2): 752-759. [26] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature materials, 2009, 8(1): 76-80. [27] Zhang Y, Mori T, Ye J, et al. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation[J]. Journal of the American Chemical Society, 2010, 132(18): 6294-6295. [28] Zhang Y, Mori T, Niu L, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion[J]. Energy & Environmental Science, 2011, 4(11): 4517-4521. [29] Wang J, Zhang C, Shen Y, et al. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131. [30] Zhang J, Zhang M, Lin L, et al. Sol Processing of Conjugated Carbon Nitride Powders for Thin‐Film Fabrication[J]. Angewandte Chemie International Edition, 2015, 54(21): 6297-6301. [49] Heller A, Miller B, Thiel F. 11.5% solar conversion efficiency in the photocathodically protected p‐InP/V3+‐V2+‐HCI/C semiconductor liquid junction cell [J]. Applied Physics Letters, 1981, 38(4): 282-284. [52] Woo R L, Xiao R, Kobayashi Y, et al. Effect of twinning on the photoluminescence and photoelectrochemical properties of indium phosphide nanowires grown on silicon (111) [J]. Nano Lett, 2008, 8(12): 4664-4669. [53] Gao L, Cui Y C, Wang J, et al. Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts [J]. Nano Lett, 2014, 14(7): 3715-3719. [54] Li Q, Tang C W, Lau K M, et al. Growth of low defect-density InP on exact Si (001) substrates by metalorganic chemical vapor deposition with position-controlled seed arrays[C]//Indium Phosphide and Related Materials (IPRM), 26th International Conference on. IEEE, 2014: 1-2. [55] Kapadia R, Yu Z, Wang H H H, et al. A direct thin-film path towards low-cost large-area III-V photovoltaics[J]. Scientific reports, 2013, 3. [56] Kapadia R, Yu Z, Hettick M, et al. Deterministic nucleation of InP on metal foils with the thin-film vapor–liquid–solid growth mode[J]. Chemistry of Materials, 2014, 26(3): 1340-1344. [57] Zheng M, Wang H P, Sutter‐Fella C M, et al. Thin‐Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates[J]. Advanced Energy Materials, 2015, 5(22). [61] Lee M H, Takei K, Zhang J J, et al. p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production [J]. Angewandte Chemie-International Edition, 2012, 51(43): 10760-10764. [64] Contreras M A, Egaas B, Ramanathan K, et al. Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells [J]. Progress in Photovoltaics: Research and applications, 1999, 7(4): 311-316. [69] Guan Z J, Luo W J, Feng J Y, et al. Selective etching of metastable phase induced an efficient CuIn0.7Ga0.3S2 nano-photocathode for solar water splitting [J]. Journal of Materials Chemistry A, 2015, 3(15): 7840-7848. [81] Todorov T K, Reuter K B, Mitzi D B. High‐efficiency solar cell with earth‐abundant liquid‐processed absorber [J]. Advanced Materials, 2010, 22(20): E156-E159. [82] Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency [J]. Advanced Energy Materials, 2014, 4(7). [89] Huang S, Luo W, Zou Z. Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method [J]. Journal of Physics D-Applied Physics, 2013, 46(23). [90] Wen X, Luo W, Zou Z. Photocurrent improvement in nanocrystalline Cu2ZnSnS4 photocathodes by introducing porous structures [J]. Journal of Materials Chemistry A, 2013, 1(48): 15479-15485. [91] Nagoya A, Asahi R, Kresse G. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications [J]. Journal of Physics: Condensed Matter, 2011, 23(40): 404203. [92] Guan Z, Luo W, Zou Z. Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu2ZnSnS4 photocathode [J]. Crystengcomm, 2014, 16(14): 2929-2936. [93] Guan Z, Luo W, Xu Y, et al. Aging precursor solution in high humidity remarkably promoted grain growth in Cu2ZnSnS4 films [J]. Acs Applied Materials & Interfaces, 2016. [97] Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review[J]. Catalysis Science & Technology, 2015, 5(3): 1360-1384. [98] Hu S, Xiang C, Haussener S, et al. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems [J]. Energy & Environmental Science, 2013, 6(10): 2984-2993. [99] Choi W J, Kwak D J, Park C S, et al. Characterization of transparent conductive ITO, ITiO, and FTO Films for application in photoelectrochemical cells[J]. Journal of nanoscience and nanotechnology, 2012, 12(4): 3394-3397. |
[1] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[2] | 张庆暖, 张芳芳, 李红霞, 杨兵军, 李小成, 杨娟. 高容量材料Si@CPZS在锂离子电池中的储锂性能研究[J]. 电化学(中英文), 2020, 26(1): 121-129. |
[3] | M. Saadawy. 柠檬酸中锌防蚀剂(1,3-Dioxolan-2-ylmethyl)三苯基溴化磷和碘离子的协同效应研究[J]. 电化学(中英文), 2017, 23(4): 441-455. |
[4] | 许文林,李宝同,王大为,王雅琼. 甲基磺酰氟Simons电化学氟化过程特性和机理研究[J]. 电化学(中英文), 2017, 23(3): 316-321. |
[5] | 李首顶, 郭江淮, 谢勇, 宓锦校, 杨勇. 钠离子电池Na2MnSiO4正极材料的合成、结构及其电化学性能研究[J]. 电化学(中英文), 2015, 21(4): 332-335. |
[6] | 徐敏敏,刘可,郭清华,姚建林*. Au@SiO2膜/Ti电极吸附吡啶的表面增强拉曼光谱研究[J]. 电化学(中英文), 2014, 20(3): 272-276. |
[7] | 孙姣丽,陈志娇,李益孝,程琥*. Li2FeSiO4/C正极材料的固相合成及电化学性能[J]. 电化学(中英文), 2013, 19(6): 575-578. |
[8] | 程琥, 刘子庚, 李益孝, 陈忠, 杨勇, . 锂离子电池正极材料Li_2MnSiO_4固体核磁共振谱研究[J]. 电化学(中英文), 2010, 16(3): 296-299. |
[9] | 黄行康, 常海涛, 甘健龙, 张清顺, 岳红军, 吕东平, 杨勇, . Li-birnessite型层状二氧化锰的合成及电化学性能[J]. 电化学(中英文), 2009, 15(2): 194-197. |
[10] | 秦国旭, 万新军, 袁希梅, 褚道葆, . 纳米Na_2SiF_6的电化学制备、表征与荧光性质[J]. 电化学(中英文), 2008, 14(3): 308-312. |
[11] | 叶霖, 赵玉美, 张晓雯, 冯增国, 白莹, 吴锋, . 纳米SiO_2复合的梳状聚醚聚合物电解质的导电性能研究[J]. 电化学(中英文), 2007, 13(1): 19-24. |
[12] | 闫俊美;黄惠贞;张静;杨勇;. 锂离子电池硅化物及其复合负极材料的研究[J]. 电化学(中英文), 2005, 11(4): 416-419. |
[13] | 冯瑞香,董华,艾新平,杨汉西. BaFeSi/C复合物作为锂离子电池负极材料的研究[J]. 电化学(中英文), 2004, 10(4): 391-396. |
[14] | 陈汝芬,宋秀芹,刘华亭. 纳米级Li_(2+x)Gd_xSi1_(+x)O_3的溶胶—凝胶法合成及离子导电性研究[J]. 电化学(中英文), 1999, 5(3): 272-275. |
[15] | 李国铮,张承乾,杨秀梅. 光电化学刻蚀n~+-Si的电致发光[J]. 电化学(中英文), 1997, 3(2): 154-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||