[1] Xie X, Ye M, Hsu P C, et al. Microbial battery for efficient energy recovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(40): 15925-15930.
[2] Lv Z S, Xie D H, Li F S, et al. Microbial fuel cell as a biocapacitor by using pseudo- capacitive anode materials[J]. Journal of Power Sources, 2014, 246: 642-649.
[3] Cusick R D, Kiely P D, Logan B E. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8855-8861.
[4] Wang C T, Chen W J, Huang R Y. Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli[J]. International Journal of Hydrogen Energy, 2010, 35(13): 7217-7223.
[5] Morris J M, Jin S, Wang J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(7): 1730-1734.
[6] Zhao Y, Li P, Wang X B, et al. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 967-972.
[7] Wei L L, Han H L, Shen J Q. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12980-12986.
[8] Freguia S, Rabaey K, Yuan Z, et al. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J]. Electrochimica Acta, 2007, 53(2): 598-603.
[9] Logen B E, Call D, Cheng S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23): 8630-8640.
[10] De Silva Muňoz L, Bergel A, Féron D et al. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8561-8568.
[11] Zhang Y P, Sun J, Hu Y Y, et al. Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials[J]. International Journal of Hydrogen Energy, 2012, 37(22): 16935-16942.
[12] You S J, Wang X H, Zhang J N, et al. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell[J]. Biosensors and Bioelectronics, 2011, 26(5): 2142-2146.
[13] Feng C H, Wan Q Y, Lv Z S, et al. One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh[J]. Biosensors and Bioelectronics, 2011, 26(9): 3953-3957.
[14] Wei L L, Han H L, Shen J Q. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12980-12986.
[15] Pinto R P, Srinivasan B, Guiot S R, et al. The effect of real-time external resistance optimization on microbial fuel cell performance[J]. Water Research, 2011, 45(4): 1571-1578.
[16] Zhang Y P, Hu Y Y, Li S Z, et al. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9284-9289.
[17] Zhang J N(张金娜), Zhao Q L(赵庆良), You S J(尤世界), et al. Power generation in biocathode microbial fuel cell with different cathode materials[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2010, 31(1): 162-166.
[18] He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies[J]. Energy & Environmental Science, 2009, 2(2): 215-219. |