[1] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11: 19-29.[2] ManthiramA, Fu Y, Su Y S, Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.[3] Ji X L, Nazar L F. Advances in Li-S batteries[J]. Journal of Materials Chemistry, 2010, 20(44): 9821-9826.[4] Li D, Han F, Wang S, et al. High sulfur loading cathodes fabricated using peapod like, large pore volume mesoporous carbon for lithium-sulfur battery[J]. ACS Applied Materials Interfaces, 2013, 5(6): 2208-2213.[5] Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011, 23(47): 5641-5644.[6] Zhang B, Lai C, Zhou Z, et al. Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials[J]. Electrochimica Acta, 2009, 54(14): 3708-3713.[7] CaoY L, Li X L, Aksay I A, et al. Sandwich-type functionalized grapheme sheet-sulfur nanocomposite for rechargeable lithium batteries[J]. Physical Chemistry Chemical Physics, 2011, 13(17): 7660-7665.[8] Wang J L, Yang J, Xie J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte[J]. Electrochemistry Communications, 2002, 4(6): 499-502.[9] Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231: 153-162.[10] Zhao C R(赵春荣), Wang W K(王维坤), Liu R J(刘荣江), et al. LMC/S composite synthesized by vacuum impregnation at normal temperature[J]. Battery(电池), 2010, 40(1): 6-9.[11] Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy & Environmental Science, 2010, 3: 1531-1537. [12] Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature materials, 2009, 8: 500-506.[13] Liang C D, Dudney N J, Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730.[14] He G, Ji X L, Nazar L. High ‘‘C’’ rate Li-S cathodes: Sulfur imbibed bimodal porous carbons[J]. Energy & Environmental Science, 2011, 4: 2878-2883.[15] Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3591-3595. [16] Zhou L, Huang T, Yu A S. Three-dimensional flower-shaped activated porous carbon/sulfur composites a cathode materials for lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2442-2447.[17] Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of The American Chemical Society, 2012, 134(45): 18510-18513.[18] Zhou G, Wang D W, Li F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & Environmental Science, 2012, 5(10): 8901-8906.[19] Zhang S M, Zhang Q, Huang J Q, et al. Composite cathodes containing SWCNT@S coaxial nanocables: Facile synthesis, surface modification, and enhanced performance for Li-ion storage[J]. Particle & Particle Systems Characterization, 2013, 30(2): 158-165.[20] Zheng G, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithiumbatteries[J]. Nano Letters, 2011, 11(10): 4462-4467.[21] Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270.[22] Zhao M Q, Liu X F, Zhang Q, et al. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769.[23] Zhou L, Lin X J, Huang T, et al. Nitrogen-doped porous carbon nanofiber webs/sulfur composites as cathode materials for lithium-sulfur batteries[J]. Electrochimica Acta, 2014, 116: 210-216.[24] Miao L X, Wang W K, Yuan K G, et al. A lithium-sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth-sulfur material[J]. Chemical Communications, 2014, 50: 13231-13234.[25] Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2011, 50(26): 5904-5908.[26] Zheng G Y, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. NanoLetters, 2011, 11(10): 4462-4467.[27] Zhang C F, Wu H B, Yuan C Z, et al. Confining sulfurin double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(38): 9592-9595.[28] Chen S Q, Huang X D, Sun B, et al. Multi-shelled hollow carbon nanospheres for lithium-sulfur batteries with superior performances[J]. Journal of Materials Chemistry A, 2014, 2: 16199-16207.[29] Chen S Q, Huang X D, Liu H, et al. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2014, 4(8): 1301761.[30] Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of The American Chemical Society, 2011, 133(46): 18522-18525.[31] Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647.[32] Evers S, Nazar L F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic e?ciency and high practical sulfur content[J]. Chemical Communications, 2012, 48: 1233-1235.[33] Gao X F, Li J Y, Guan D S, et al. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic e?ciency[J]. ACS Applied Materials Interfaces, 2014, 6(6):4154-4159. [34] Zhou L, Lin X J, Huang T, et al. Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2014, 2: 5117-5123.[35] Li N W, Zheng M B, Lu H L, et al. High-rate lithium–sulfur batteries promoted by reduced graphene oxide coating[J]. Chemical Communications, 2012, 48: 4106-4108.[36] Wu F, Chen J Z, Li L, et al. Improvement of rate and cycle performance by rapid polyaniline coating of a MWCNT/sulfur cathode[J]. Journal of Physical Chemistry C, 2011, 115(49): 2441-24417.[37] Ji L, Rao M, Aloni S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011, 4: 5053-5059.[38] Su Y S, Manthiram A. A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium-sulfurbatteries[J]. Electrochimica Acta, 2012, 77: 272-278.[39] Wang C H, Chen H W, Dong W L, et al. Sulfur-amine chemistry-based synthesis of multi- walled carbon nanotube-sulfur composites for high performance Li-S batteries[J]. Chemical Communications, 2014, 50: 1202-1204.[40] Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of The Electrochemical Society, 2009, 156(8): A694-A702.[41] Liang X, Wen Z Y, Liu Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources, 2011, 196(22): 9839-9843.[42] Xiong S Z, Xie K, Diao Y, et al. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution forlithium-sulfur batteries[J]. Electrochimica Acta, 2012, 83: 78-86.[43] Zhang S S. Role of LiNO3 in rechargeable lithium/sulfur battery[J]. Electrochimica Acta, 2012, 70: 344-348.[44] Suo L M, Hu Y S, Li H, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4: 1481.[45] Zhang Y Z, Liu S, Li G C, et al. Sulfur/polyacrylonitrile/carbon multi-compositesas cathode materials for lithium/sulfur battery in the concentrated electrolyte[J]. Journal of Materials Chemistry A, 2014, 2: 4652-4659.[46] Miao L X(苗力孝). Research of sulfur/carbon composites with net-work structure as cathode materials for lithium sulfur battery[D]. Beijing Institute of Technology, 2014.[47] Ding N, Chien S W, Andy Hor T S, et al. Key parameters in design of lithium sulfur batteries[J]. Journal of Power Sources, 2014, 269: 111-116. |