欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (12): 2516003.  doi: 10.61558/2993-074X.3599

• 综述 • 上一篇    

生命过程的电化学表征与调控

李玥琪a, 黄卫华b, 江德臣c, 刘宝红d, 苏彬e, 田阳f, 徐静娟c, 于萍g, 赵峰h, 鞠熀先c,*(), 李景虹a,i,*()   

  1. a中国科学技术大学微尺度物质科学国家研究中心,安徽 合肥 230026
    b武汉大学化学与分子科学学院,湖北 武汉 430072
    c南京大学化学与化工学院,生命分析化学全国重点实验室,江苏 南京 210093
    d复旦大学,生物医学研究院,化学系,上海 200433
    e浙江大学化学系分析化学研究所,浙江 杭州 310058
    f华东师范大学化学与分子工程学院,绿色化学与化工过程绿色化上海市重点实验室,上海 200241
    g中国科学院化学研究所,北京分子科学国家实验室,活体分析化学院重点实验室,北京 100190
    h中国科学院城市环境研究所,先进环境装备与污染防治技术全国重点实验室,福建 厦门 361021
    i北京生命科学研究院,北京 102206
    j清华大学化学系,生命有机磷化学及化学生物学教育部重点实验室,新基石科学实验室, 北京 100084
  • 收稿日期:2025-10-10 修回日期:2025-11-19 接受日期:2025-12-08 发布日期:2025-12-08 出版日期:2025-12-28
  • 通讯作者: 鞠熀先,李景虹 E-mail:hxju@nju.edu.cn;jhli@mail.tsinghua.edu.cn

Electrochemical Characterization and Modulation of Biological Processes

Yue-Qi Lia, Wei-Hua Huangb, De-Chen Jiangc, Bao-Hong Liud, Bin Sue, Yang Tianf, Jing-Juan Xuc, Ping Yug, Feng Zhaoh, Huang-Xian Juc,*(), Jing-Hong Lia,i,*()   

  1. aHefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
    bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 2430072, China
    cState Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
    dDepartment of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
    eState Key Laboratory of Soil Pollution Control and Safety, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
    fShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
    gBeijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing, 100190 China; University of Chinese Academy of Sciences, Beijing 100049, China
    hState Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    iBeijing Life Science Academy, Beijing 102206, China
    jDepartment of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, New Cornerstone Science Laboratory, Tsinghua University, Beijing 100084, China
  • Received:2025-10-10 Revised:2025-11-19 Accepted:2025-12-08 Online:2025-12-08 Published:2025-12-28
  • Contact: Huang-Xian Ju, Jing-Hong Li E-mail:hxju@nju.edu.cn;jhli@mail.tsinghua.edu.cn

摘要:

电化学过程是生命功能的核心,主导着能量转导、代谢流动与分子信号传递。随着电化学科学的快速发展,如今能够以空前的空间、时间与化学分辨率对这些过程进行探测与调控。本综述构建了一个从基础机制到表征技术再到功能调控的整体框架。本文首先概述线粒体呼吸、微生物胞外电子传递和DNA与蛋白质介导的电荷传导途径,并介绍光合作用中的光-电子转换原理,以及氧化还原平衡在协调细胞响应中的核心作用。随后,重点总结可实现多尺度生命体系表征的电化学分析技术,包括生物传感、电化学与扫描探针成像、电化学发光检测,以及膜电位与神经递质的动态测量。随着柔性生物界面、超微电极与纳米孔等新兴平台的快速发展,上述表征和测量进一步扩展至体内和单分子尺度。最后,本文讨论如何利用电化学调控代谢通路、微生物和蛋白质活性以及神经信号,从而实现精准治疗和生物工程应用。总体而言,这些进展确立了电化学作为解析与引导生命体系研究的强大基础工具。

关键词: 电化学分析, 单细胞电化学, 生物电子转移, 光合作用, 电化学生物传感

Abstract:

Electrochemical processes lie at the core of biological function, governing energy transduction, metabolic flux, and molecular signaling. Recent advances in electrochemical science now allow these processes to be probed and controlled with unprecedented spatial, temporal, and chemical resolution. In this review, we present an integrated framework that progresses from fundamental mechanisms to analytical technologies and functional modulation. We begin by outlining electron transfer pathways in mitochondrial respiration, microbial extracellular electron transfer, and DNA- and protein-based charge conduction, followed by the principles of photon-electron conversion in photosynthesis and the central role of redox equilibrium in coordinating cellular responses. We then highlight electrochemical analytical strategies that enable multiscale biological characterization, including biosensing, electrochemical and scanning probe imaging, electrogenerated chemiluminescence detection, and measurements of membrane potentials and neurotransmitter dynamics. Emerging platforms such as flexible biointerfaces, ultramicroelectrodes, and nanopore systems further extend these capabilities to in vivo and single-molecule contexts. Finally, we discuss how electrochemical inputs can be used to regulate metabolic pathways, microbial and protein activities, and neural signaling, enabling precision therapeutic and bioengineering applications. Together, these developments establish electrochemistry as a powerful foundation for decoding and directing biological systems.

Key words: Electrochemical analysis, Single-cell electrochemistry, Biological electron transfer, Photosynthesis, Electrochemical biosensing