欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 研究论文 •    

轴向硫配位工程增强Fe‒N‒C催化剂性能,助力高性能质子交换膜燃料电池

林琳a,b#, 候秀旋c,#, 樊哲琛a,b, 尹义轩a,b, 赵纬祎a,b, 魏恺a,b, 周雨蝶a,b, 候利娜a,b, 王颖c,*, 万浩a,b,*, 葛君杰a,b,*
  

  1. a. 中国科学技术大学精密智能化学国家重点实验室,中国合肥 230026; b. 中国科学技术大学化学与材料科学学院,中国合肥 230026; c. 中国科学院长春应用化学研究所稀土资源利用国家重点实验室,中国长春 130022.
  • 发布日期:2025-11-05
  • 通讯作者: 王颖, 万浩, 葛君杰 E-mail:ywang_2012@ciac.ac.cn; wh1992@mail.ustc.edu.cn; gejunjie@ustc.edu.cn

Axial Sulfur-Coordination Engineering Boosts Fe‒N‒C Catalysts for High-Performance Proton Exchange Membrane Fuel Cells

Lin Lina,b#, Xiuxuan Houc,#, Zhechen Fana,b, Yixuan Yina,b, Weiyi Zhaoa,b, Kai Weia,b, Yudie Zhoua,b, Lina Houa,b, Ying Wangc,*, Hao Wana,b,*, Junjie Gea,b,*   

  1. a. State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China; b. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; c. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, China.
  • Online:2025-11-05
  • Contact: Ying Wang, Hao Wan, Junjie Ge E-mail:ywang_2012@ciac.ac.cn; wh1992@mail.ustc.edu.cn; gejunjie@ustc.edu.cn

摘要: Fe-N-C催化剂长期受限于氧还原反应(ORR)动力学迟缓的问题,这源于其对氧中间体的过度吸附强度及较低的活性位点利用率。杂原子掺杂通过调节金属位点的电子结构优化中间体吸附,有效加速ORR动力学;而化学气相沉积技术(CVD)可以提升活性位点的周转频率(TOF)。本文采用双前驱体CVD策略,开发出富含FeS1N4位点的FeSNC催化剂。实验与理论分析表明,硫元素的引入打破了活性位点的对称配位,将OH*吸附能从0.212 eV优化至1.194 eV。此外,TOF从1.98 e-1·site-1·s-1提升至6.32 e-1·site-1·s-1,显著增强了催化剂的本征活性。更值得注意的是,含硫物种的亲水性显著提高了掺硫催化剂的亲水性,从而促进了氧气和质子传输。因此,FeSNC催化剂在0.1M HClO4中表现出极高的0.863V半波电位,并在H2-O2质子交换膜燃料电池中达到1.2W·cm-2的峰值功率密度。这项工作突出了配位工程的关键作用。

关键词: 氧还原反应, Fe-N-C, 杂原子掺杂, 电子调控, 氧传质

Abstract: Fe-N-C catalysts have long suffered from kinetically sluggish oxygen reduction reaction (ORR) due to excessive adsorption strength toward oxygen intermediates and low site utilization. Heteroatom doping effectively accelerates ORR reaction kinetics through electronic structure modulation of metal sites for optimal intermediate adsorption, while chemical vapor deposition (CVD) enhances the turnover frequency (TOF) of active sites. Herein, we develop an FeSNC catalyst featuring abundant FeS1N4 sites via a dual-precursor CVD strategy. Experimental and theoretical analyses reveal that S incorporation disrupts the symmetric coordination of active sites, which optimizes OH* adsorption energies from 0.212 eV to 1.194 eV. Moreover, the TOF increased from 1.98 e-1·site-1·s-1 to 6.32 e-1·site-1·s-1, significantly enhancing the intrinsic activity of the catalyst. More notably, the hydrophilic character of S-containing species substantially improved hydrophilicity in the S-doped catalyst, thereby promoting mass transport of oxygen and proton delivery. As a result, FeSNC catalyst exhibits an extremely high half-wave potential of 0.863 V in 0.1 M HClO4 and achieves a peak power density of 1.2 W·cm-2 in H2-O2 PEMFCs. This work highlight the critical role of coordination engineering.

Key words: Oxygen reduction reaction, Fe-N-C, Heteroatom doping, Electronic regulation, Mass transport