[1] |
Han M H, Gonzalo E, Singh G, Rojo T. A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries[J]. Energy Environ. Sci., 2015, 8(1): 81-102.
|
[2] |
Xie J, Lu Y C. A retrospective on lithium-ion batteries[J]. Nat. Commun., 2020, 11(1): 2499.
doi: 10.1038/s41467-020-16259-9
pmid: 32427837
|
[3] |
Chinese Society of Electrochemistry. The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121.
|
[4] |
Davidsson Kurland S. Energy use for GWh-scale lithium-ion battery production[J]. Environ. Res. Commun., 2019, 2(1): 012001.
|
[5] |
Kallitsis E. On the energy use of battery Gigafactories[J]. J. Clean. Prod., 2022, 364: 132573.
|
[6] |
May G J, Davidson A, Monahov B. Lead batteries for utility energy storage: A review[J]. J. Energy Storage, 2018, 15: 145-157.
|
[7] |
Walter M, Kovalenko M V, Kravchyk K V. Challenges and benefits of post-lithium-ion batteries[J]. New J. Chem., 2020, 44(5): 1677-1683.
doi: 10.1039/c9nj05682c
|
[8] |
Wankmüller F, Thimmapuram P R, Gallagher K G, Botterud A. Impact of battery degradation on energy arbitrage revenue of grid-level energy storage[J]. J. Energy Storage, 2017, 10: 56-66.
|
[9] |
Zhu Z X, Jiang T L, Ali M, Meng Y H, Jin Y, Cui Y, Chen W. Rechargeable batteries for grid scale energy storage[J]. Chem. Rev., 2022, 122(22): 16610-16751.
|
[10] |
Gerbig F, Cernak S, Nirschl H. Towards a novel sodium-iodine battery with an aqueous catholyte: numerical investigations of complex cathode structures[J]. ECS Trans., 2021, 104(1): 123-130.
|
[11] |
Mond H G, Freitag G. The cardiac implantable electronic device power source: Evolution and revolution[J]. Pacing Clin. Electrophysiol., 2014, 37(12): 1728-1745.
|
[12] |
Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114(23): 11636-11682.
doi: 10.1021/cr500192f
pmid: 25390643
|
[13] |
Kim S, Li X, Sang L, Yun Y S, Nuzzo R G, Gewirth A A, Braun P V. High energy density CNT/NaI composite cathodes for sodium‐ion batteries[J]. Adv. Mater. Interfaces, 2018, 5(23): 1801342.
|
[14] |
Zhang Q, Wu Z Z, Liu F, Liu S, Liu J, Wang Y L, Yan T Y. Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium-iodine batteries[J]. J. Mater. Chem. A, 2017, 5(29): 15235-15242.
|
[15] |
Zhang Q, Zeng Y H, Ye S H, Liu S. Inclusion complexation enhanced cycling performance of iodine/carbon composites for lithium-iodine battery[J]. J. Power Sources, 2020, 463: 228212.
|
[16] |
Zhao Q, Lu Y Y, Zhu Z Q, Tao Z L, Chen J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode[J]. Nano Letters, 2015, 15(9): 5982-5987.
doi: 10.1021/acs.nanolett.5b02116
pmid: 26241461
|
[17] |
Gong D C, Wang B, Zhu J Y, Podila R, Rao A M, Yu X Z, Xu Z, Lu B G. An iodine quantum dots based rechargeable sodium-iodine battery[J]. Adv. Energy Mater., 2016, 7(3): 1601885.
|
[18] |
Liang S, Xia Y, Liang C, Gan Y P, Huang H, Zhang J, Tao X Y, Sun W, Han W Q, Zhang W K. A green and facile strategy for the low-temperature and rapid synthesis of Li2S@PC-CNT cathodes with high Li2S content for advanced Li-S batteries[J]. J. Mater. Chem. A, 2018, 6(21): 9906-9914.
|
[19] |
Wang C, Cai W L, Li G R, Liu B H, Li Z P. In situ synthesis of Li2S‐loaded amphiphilic porous carbon and modification of the Li2S electrode for long‐life Li2S batteries[J]. ChemElectroChem, 2017, 5(1): 112-118.
|
[20] |
Ye F, Noh H, Lee H, Kim H T. An ultrahigh capacity graphite/Li2S battery with holey‐Li2S nanoarchitectures[J]. Adv. Sci., 2018, 5(7): 1800139.
|
[21] |
Li K D, Lin B, Li Q F, Wang H F, Zhang S, Deng C. Anchoring iodine to N-doped hollow carbon fold-hemisphere: Toward a fast and stable cathode for rechargeable lithium-iodine batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(24): 20508-20518.
|
[22] |
Qiao L, Wang C, Zhao X S. Encapsulation of iodine in nitrogen-containing porous carbon plate arrays on carbon fiber cloth as a freestanding cathode for lithium-iodine batteries[J]. ACS Appl. Energy Mater., 2021, 4(7): 7012-7019.
|
[23] |
Xie S M, Wang H K, Yao T H, Wang J K, Wang C D, Shi J W, Han X G, Liu T X, Cheng Y H. Embedding CoMoO4 nanoparticles into porous electrospun carbon nanofibers towards superior lithium storage performance[J]. J. Colloid Interface Sci., 2019, 553: 320-327.
|
[24] |
Xu H Y, Chen H, Gao C. Advanced graphene materials for sodium/potassium/aluminum-ion batteries[J]. ACS Mater. Lett., 2021, 3(8): 1221-1237.
|
[25] |
Yang S N, Cheng Y, Xiao X, Pang H. Development and application of carbon fiber in batteries[J]. Chem. Eng. J., 2020, 384: 123294.
|
[26] |
Lu K, Hu Z Y, Ma J Z, Ma H Y, Dai L M, Zhang J T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry[J]. Nat. Commun., 2017, 8(1): 527.
doi: 10.1038/s41467-017-00649-7
pmid: 28904375
|
[27] |
Wang H F, Zhang G M, Ke L L, Liu B D, Zhang S, Deng C. Understanding the effects of 3D porous architectures on promoting lithium or sodium intercalation in iodine/C cathodes synthesized via a biochemistry-enabled strategy[J]. Nanoscale, 2017, 9(27): 9365-9375.
doi: 10.1039/c7nr02311a
pmid: 28656181
|
[28] |
Shan Q Y, Huo W C, Shen M, Jing C, Peng Y, Pu H, Zhang Y X. Melamine sponge derived porous carbon monoliths with NiMn oxides for high performance supercapacitor[J]. Chin. Chem. Lett., 2020, 31(9): 2245-2248.
|
[29] |
Gopalakrishnan A, Yu A, Badhulika S. Three-dimensional nitrogen rich bubbled porous carbon sponge for supercapacitor & pressure sensing applications[J]. Int. J. Energy Res., 2020, 44(9): 7242-7253.
|
[30] |
Jing X X, Wang L, Qu K G, Li R, Kang W J, Li H B, Xiong S L. KOH chemical-activated porous carbon sponges for monolithic supercapacitor electrodes[J]. ACS Appl. Energy Mater., 2021, 4(7): 6768-6776.
|
[31] |
Shi H D, Yue M, Zhang C J, Dong Y F, Lu P F, Zheng S H, Huang H J, Chen J, Wen P C, Xu Z C, Zheng Q, Li X F, Yu Y, Wu Z S. 3D flexible, conductive, and recyclable Ti3C2Tx mxene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode[J]. ACS Nano, 2020, 14(7): 8678-8688.
|
[32] |
Liu X Q, Yuan H L, Zheng Q, Huang B Y, Liao F, Gao H J, Fu H Q, Zhang J, Liao Y W. Understanding the adsorption sites on nitrogen- and oxygen-doped carbon nanotubes for iodine uptake[J]. Appl. Surf. Sci., 2023, 629: 157387.
|
[33] |
Komarov N S, Pavlova T V, Andryushechkin B V. Iodine adsorption on Ni(111): STM and DFT study[J]. Surf. Sci., 2016, 651: 112-119.
|
[34] |
Han M S, Liu J, Deng C F, Guo J C, Mu Y B, Zou Z Y, Zheng K X, Yu F H, Li Q, Wei L, Zeng L, Zhao T S. Yolk-shell structure and spin‐polarized surface capacitance enable FeS stable and fast ion transport in sodium‐ion batteries[J]. Adv. Energy Mater., 2024, 14: 2400246.
|
[35] |
Liu J, Zheng K X, Mu Y B, Zou Z Y, Han M S, Deng C F, Guo J C, Yu F H, Li W, Wei L, Zeng L, Zhao T S. Nanosheet-interwoven structures and ion-electron decoupling storage enable Fe1-xS fast ion transport in Li+/Na+/K+ batteries[J]. Nano Energy, 2024, 131: 110266.
|