[1] Conway B E. Electrochemical Supercapacitors, scientific fundamentals and technological applications [M]. New York: Kluwer Academic/Plenum Press, 1999.[2] Arbizzani C, Mastragostino M, Soavi F. New trends in electrochemical supercapacitors [J]. Journal of Power Sources, 2001, 100(1/2): 164-170.[3] Colin A V, Bruno S. Modern batteries: an introduction to electrochemical power sources [M]. London: Arnold Press, 1997.[4] Lang J V, Kong L B, Wu W J, et al. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors [J]. Chemical Communications, 2008(35): 4213-4215.[5] Lv W, Sun F, Tang D M, et al. A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance [J]. Journal of Materials Chemistry, 2011, 21(25): 9014-9019.[6] Wu M S, Huang Y A, Yang C H, et al. Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors [J]. International Journal of Hydrogen Energy, 2007, 32(17): 4153-4159.[7] Jeong Y U, Manthiram A. Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes [J]. Journal of The Electrochemical Society, 2002, 149(11): 1419-1422.[8] Ragupathy P, Park D H, Campet G, et al. Remarkable Capacity Retention of Nanostructured Manganese Oxide upon Cycling as an Electrode Material for Supercapacitor [J]. Journal of Physical Chemistry C, 2009, 113(15): 6303-6309.[9] Yang G W, Xu C L, Li H L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance [J]. Chemical Communications, 2008(48): 6537-6539.[10] Jiang H, Zhao T, Li C Z, et al. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors [J]. Journal of Materials Chemistry, 2011, 21(11): 3818-3823.[11] Li B J, Ai M, Xu Z. Mesoporous β-Ni(OH)2: synthesis and enhanced electrochemical performance [J]. Chemical Communications, 2010, 46(34): 6267-6269.[12] Bao S J, Li C M, Guo C X, et al. Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors [J]. Journal of Power Sources, 2008, 180(1): 676-681.[13] Tao F, Zhao Y Q, Zhang G Q, et al. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors [J]. Electrochemistry Communications, 2007, 9(6): 1282-1287.[14] Justin P, Rao G R. CoS spheres for high-rate electrochemical capacitive energy storage application [J]. International Journal of Hydrogen Energy, 2010, 35(18): 9709-9715.[15] Jayalakshmi M, Rao M M, Choudary B M. Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions [J]. Electrochemistry Communications, 2004, 6(11): 1119-1122.[16] Jayalakshmi M, Rao M M. Synthesis of zinc sulphide nanoparticles by thiourea hydrolysis and their characterization for electrochemical capacitor applications [J]. Journal of Power Sources, 2006, 157(1): 624-629.[17] Yang L X, Zhu Y J, Tong H, et al. Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol [J]. Journal of Solid State Chemistry, 2007, 180(7): 2095-2101.[18] Park K W, Choi J H, Kwon B K, et al. Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation [J]. Journal of Physical Chemistry B, 2002, 106(8): 1869-1877.[19] Cao L, Kong L B, Liang Y Y, et al. Preparation of novel nano-composite Ni(OH)2/USY material and itsapplication for electrochemical capacitance storage [J]. Chemical Communications, 2004(14): 1646-1647.[20] Wang S H(王淑红), Sun H Y(孙虹燕), Bai X D(白续铎), et al. Study on the hybrid supercapacitor based on Ni(OH)2/activated carbon [J]. Journal of Natural Science of Heilongjiang University (黑龙江大学自然科学学报), 2005, 22(1): 78-80. |