电化学(中英文) ›› 2012, Vol. 18 ›› Issue (3): 279-285. doi: 10.61558/2993-074X.2916
万云海, 袁国亮, 夏晖*
收稿日期:
2011-11-24
修回日期:
2011-12-13
出版日期:
2012-06-28
发布日期:
2011-12-22
通讯作者:
夏晖
E-mail:jasonxiahui@gmail.com
基金资助:
国家自然科学基金项目(51102134)和南京理工大学自主科研专项计划资助项目(2011ZDJH21)资助
WAN Yun-Hai, YUAN Guo-Liang, XIA Hui*
Received:
2011-11-24
Revised:
2011-12-13
Published:
2012-06-28
Online:
2011-12-22
Contact:
XIA Hui
E-mail:jasonxiahui@gmail.com
摘要: 高能量密度、功率密度和温度稳定性的全固态薄膜锂离子电池是微电子器件的理想电源. 开发新型的大比容量正极薄膜材料是解决问题的关键之一. 与LiCoO2正极相比,层状结构的LiNi0.5Mn0.5O2有更高的可逆比容量和结构稳定性. 本文应用脉冲激光沉积法制备LiNi0.5Mn0.5O2沉积薄膜,研究了衬底材料、温度对薄膜的微观结构、表面形貌及组分的影响. 由LiNi0.5Mn0.5O2电极组装半电池,研究了薄膜的电化学性能与晶体结构、表面形貌及组分间的关系,表征了LiNi0.5Mn0.5O2沉积薄膜不同充电截止电压的循环稳定性及倍率性能,讨论了LiNi0.5Mn0.5O2薄膜的结构特点.
中图分类号:
万云海, 袁国亮, 夏晖. 脉冲激光沉积LiNi0.5Mn0.5O2薄膜正极性能[J]. 电化学(中英文), 2012, 18(3): 279-285.
WAN Yun-Hai, YUAN Guo-Liang, XIA Hui. Performnces of LiNi0.5Mn0.5O2 Thin Film Electrodes Prepared by Pulsed Laser Deposition[J]. Journal of Electrochemistry, 2012, 18(3): 279-285.
[1] Shokoohi K, Tarascon J M, Wilkens B J. Fabrication of thin-film LiMn2O4 cathodes for rechargeable microbatteries[J]. Applied Physics Letters, 1991, 59(10): 1260-1262.[2] Choi S I , Yoon S G. Improvement of discharge capacity of LiCoO2 thin-film cathodes deposited in trench structure by liquid-delivery metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2003, 82(19): 3345-3347. [3] Tarascon J M , Armand M. Issues and challenges facing rechargeable lithium batteries[J].Nature, 2001, 414(6861): 359-367.[4] Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004,104(10): 4271-4301.[5] Martha S K, Markevich E, Burgel V, et al. A short review on surface chemical aspects of Li batteries: A key for a good performance[J].Journal of Power Sources, 2009,189(1): 288-296.[6] Xia H, Lu L, Ceder G. Substrate effect on the microstructure and electrochemical properties of LiCoO2 thin films grown by PLD[J]. Journal of Alloys and Compounds, 2006, 417(1/2): 304-310.[7] Lu Z H, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 [J]. Journal of the Electrochemical Society, 2002, 149(6): A778-A791.[8] Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries[J]. Chemistry Letters, 2001, 8: 744-745.[9] Julien C. Local cationic environment in lithium nickel-cobalt oxides used as cathode materials for lithium batteries[J]. Solid State Ionics, 2000, 136: 887-896.[10] Karan N K, Saavedra-Arias J J, Pradhan D K, et al. Structural and electrochemical characterizations of solution derived LiMn0.5Ni0.5O2 as positive electrode for Li-ion rechargeable batteries[J]. Electrochemical and Solid-State Letters, 2008, 11(8): A135-A139.[11] Ramana C V, Zaghib K, Julien C. Highly oriented growth of pulsed-laser deposited LiNi0.8Co0.2O2 films for application in microbatteries[J]. Chemistry of Materials, 2006, 18(6): 1397-1400.[12] Xia H, Lu L, Meng Y S. Growth of layered LiNi0.5Mn0.5O2 thin films by pulsed laser deposition for application in microbatteries [J]. Applied Physics Letters, 2008, 92(1): 011912-1-011912-3.[13] Jang Y I, Huang B, Chou F C, et al. Magnetic characterization of lambda-MnO2 and Li2Mn2O4 prepared by electrochemical cycling of LiMn2O4 [J]. Journal of Applied Physics, 2000, 87(10): 7382 -7388. [14] Ariyoshi K, Iwakoshi Y, Nakayama N, et al. Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells [J]. Journal of the Electrochemical Society, 2004, 151(2): A293-A303.[15] Xia H, Meng Y S, Lu L, et al. Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4-δ thin-film electrodes prepared by pulsed laser deposition [J]. Journal of the Electrochemical Society, 2007, 154(8): A737-A743.[16] Xia H, Lu L. Texture effect on the electrochemical properties of LiCoO2 thin films prepared by PLD [J]. Electrochimica Acta, 2007, 52(24): 7014-7021.[17] Xia H, Meng Y S, Lai M O, et al. Structural and electrochemical properties of LiNi0.5Mn0.5O2 thin-film electrodes prepared by pulsed laser deposition [J]. Journal of the Electrochemical Society, 2010, 157(3): A348-A354.[18] Kang K S, Meng Y S, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries [J].Science, 2006, 311(5763): 977-980.[19] Xia H, Lu L, Meng Y S, et al. Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition [J]. Journal of the Electrochemical Society, 2007, 154(4): A337-A342. |
[1] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[2] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[3] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[4] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[5] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[6] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[7] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[8] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[9] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[10] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[11] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[12] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[13] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[14] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[15] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||