[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144(4): 1188-1194.[2] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J]. J Electrochem Soc, 1997, 144(5): 1609-1613.[3] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat Mater, 2002, 1(2): 123-128.[4] Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics, 2002, 148(1-2): 45-51.[5] Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. J Electrochem Soc, 2002, 149(9): A1184-A1189.[6] Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J]. J Power Sources, 2007, 163(2): 1064-1069.[7] Delacourt C, Poizot P, Levasseur S, et al. Size effects on carbon-free LiFePO4 powders [J]. Electrochem Solid St, 2006, 9(7): A352-A355.[8] Zheng Ming-sen(郑明森), Liu Shan-ke(刘善科), Sun Shi-gang(孙世刚), et al. Cu doping LiFePO4 and its electrochemical performance [J]. Electrochemistry(电化学), 2008, 14(1): 1-5.[9] Lu J B, Tang Z L, Le B, et al. Structure and electrochemical properties of LiFePO4 as the cathode of lithium ion battery [J]. Chem J Chinese U(高等化学学报), 2005, 26(11): 2093-2096.[10] Dominko R, Bele M, Gaberscek M, et al. Porous olivine composites synthesized by sol-gel technique [J]. J Power Sources, 2006, 153(2): 274-280.[11] Cai Y, Li Z J, Zhang H L, et al. 1-Alkyl-2,3-dimethylimidazolium bis (trifluoromethanesul -fonyl) imide ionic liquids as highly safe electrolyte for Li/LiFePO4 battery [J]. Electrochim Acta, 2010, 55(16): 4728-4733.[12] Zou Hong-li(邹红丽), Zhang Guang-hui(张光辉), Shen Pei-kang(沈培康). Hydrothermal reduction synthesis of LiFePO4 and its electrochemical performance [J]. Electrochemistry(电化学), 2010, 16(4): 416-419.[13] Saravanan K, Reddy M V, Balaya P, et al. Storage performance of LiFePO4 nanoplates [J]. J Mater Chem, 2009, 19(5): 605-610.[14] Xu C B, Lee J, Teja A S. Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water [J]. J Supercrit Fluid, 2008, 44(1): 92-97.[15] Gomez L S, de Meatza I, Martin M I, et al. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis [J]. Electrochim Acta, 2010, 55(8): 2805-2809.[16] Xie H, Zhou Z T. Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery [J]. Electrochim Acta, 2006, 51(10): 2063-2067.[17] Yu F, Zhang J J, Yang Y F, et al. Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method [J]. J Power Sources, 2009, 189(1): 794-797.[18] Yu F, Zhang J J, Yang Y F, et al. Up-scalable synthesis, structure and charge storage properties of porous microspheres of LiFePO4@C nanocomposites [J]. J Mater Chem, 2009, 19(48): 9121-9125.[19] Ju S H, Kang Y C. LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black [J]. Mater Chem Phys, 2008, 107(2-3): 328-333.[20] Konstantinov K, Bewlay S, Wang G X, et al. New approach for synthesis of carbon-mixed LiFePO4 cathode materials [J]. Electrochim Acta, 2004, 50(2-3): 421-426.[21] Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J]. Mater Lett, 2004, 58(11): 1788-1791.[22] Dominko R, Bele M, Goupil J M, et al. Wired porous cathode materials: A novel concept for synthesis of LiFePO4 [J]. Chem Mater, 2007, 19(12): 2960-2969.[23] Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect [J]. Adv Mater, 2007, 19(15): 1963-1966.[24] Jiang T, Pan W, Wang J, et al. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method [J]. Electrochim Acta, 2010, 55(12): 3864-3869.[25] Huang B, Zheng X D, Jia D M, et al. Design and synthesis of high-rate micron-sized, spherical LiFePO4/C composites containing clusters of nano/microspheres [J]. Electrochim Acta, 2010, 55(3): 1227-1231.[26] Hwang B J, Hsu K F, Hu S K, et al. Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode material for lithium batteries [J]. J Power Sources, 2009, 194(1): 515-519.[27] Yu F, Zhang J, Yang Y, et al. Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol-gel-spray drying method [J]. J Power Sources, 2010, 195(19): 6873-6878.[28] Gao F, Tang Z Y. Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J]. Electrochim Acta, 2008, 53(15): 5071-5075. |