电化学(中英文) ›› 2013, Vol. 19 ›› Issue (5): 444-453. doi: 10.61558/2993-074X.2135
• 环境电化学近期研究专辑(吉林大学 林海波教授主编) • 上一篇 下一篇
冯春华*,谢道海,庞韵梦,韩涛,韦朝海
收稿日期:
2012-12-25
修回日期:
2013-03-20
出版日期:
2013-10-28
发布日期:
2013-03-20
通讯作者:
冯春华
E-mail:chfeng@scut.edu.cn
基金资助:
国家自然科学基金项目(No. 21177042,No. 21037001),广东省自然科学基金项目(No. S2011010002231)和华南理工大学中央高校基本业务经费(No. 2012ZZ0048)资助
FENG Chun-hua*, XIE Dao-hai, PANG Yun-meng, HAN Tao, WEI Chao-hai
Received:
2012-12-25
Revised:
2013-03-20
Published:
2013-10-28
Online:
2013-03-20
Contact:
FENG Chun-hua
E-mail:chfeng@scut.edu.cn
摘要: 厌氧环境下一些微生物能够接受来自于电极的电子并将电子传递至环境污染物,这使得电驱动下生物还原技术在可持续性废水处理以及生物修复方面受到越来越多关注. 此体系中,阴极电子传递被认为是影响环境污染物厌氧转化可行性和效率的制约因素. 文中首先评述可能的电子传递原理,包括水解氢气介导的间接电子传递、人工合成电子穿梭体或者细菌分泌电子穿梭体介导的间接电子传递、以及电极与细菌之间的直接电子传递等途径. 相比间接电子传递,直接电子传递避免了将电子传递给没有起作用的介体及没有和电极接触的浮游微生物,因而更加节能. 另外,列举了自养反硝化、生物还原脱氯、重金属生物还原、CO2生物还原以及硫酸盐生物还原等应用实例. 最后,提出了此领域研究发展亟需解决的两个重要问题,包括阴极生物膜的培养以及电子从电极转至微生物内在机理的解析.
中图分类号:
冯春华, 谢道海, 庞韵梦, 韩涛, 韦朝海. 电驱动下的环境污染物厌氧生物转化—电子转移原理和应用实例[J]. 电化学(中英文), 2013, 19(5): 444-453.
FENG Chun-hua, XIE Dao-hai, PANG Yun-meng, HAN Tao, WEI Chao-hai. Anaerobic Biotransformation of Environmental Pollutants Stimulated by Electric Field: Electron-Transfer Mechanisms and Application Examples[J]. Journal of Electrochemistry, 2013, 19(5): 444-453.
[1] Angenent L T, Karim K, Al-Dahhan M H, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends in Biotechnology, 2004, 22(9): 475-485.[2] Rabaey K, Verstraete W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298.[3] Geelhoed J S, Hamelers H V M, Stams A J M. Eletricity-mediated biological hydrogen production[J]. Current Opinion in Microbiology, 2010, 13(3): 307-315.[4] Lu L, Xing D, Xie T, et al. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells[J]. Biosensors and Bioelectronics, 2010, 25(12): 2690-2695.[5] Beschkov V, Velizarow S, Agathos S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochemical Engineering Journal, 2004, 17(2): 141-145.[6] Ghafari S, Hasan M, Aroua M K. Bio-eletrochemical removal of nitrate from water and wastewater-A review[J]. Bioresource Technology, 2008, 99(10): 3965-3974.[7] Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: a critical review[J]. Energy and Environmental Science, 2008, 1(4): 417-429.[8] Lovley D R, Nevin K P. A shift in the current: New applications and concepts for microbe-electrode electron exchange[J]. Current Opinion in Microbiology, 2011, 22(3): 441-446.[9] Sadoff H L, Halvorson H O, Finn R K. Electrolysis as a means of aerating submerged cultures of microorganisms[J]. Applied Microbiology, 1956, 4 (4): 164-170.[10] He Z, Angenent L T. Application of bacterial biocathodes in microbial fuel cells[J]. Electroanalysis, 2006, 18(19): 2009-2015.[11] Wang G (王刚), Huang L P(黄丽萍), Zhang Y F(张翼峰). Study and application of biological cathode in microbial fuel cells[J]. Environmental Science and Technology(环境科学与技术), 2008, 31(12): 101-103.[12] Chen L X(陈立香), Xiao Y(肖勇), Zhao F(赵峰). Biocathodes in microbial fuel cells[J]. Progress in Chemistry(化学进展), 2012, 24(1): 157-162.[13] Thrash J C, Coates J D. Review: Direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science and Technology, 2008, 42(11): 3921-3931.[14] Aulenta F, Catervi A, Majone M, et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains ef?cient microbial reductive dechlorination of TCE[J]. Environmental Science and Technology. 2007, 41 (7): 2554-2559.[15] Thrash J C, Trump J I V, Weber K A, et al. Electrochemical stimulation of microbial perchlorate reduction[J]. Environmental Science and Technology, 2007, 41 (5): 1740-1746.[16] Park D H, Zeikus J G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red inmembrane-driven fumarate reduction and energy conservation[J]. Journal of Bacteriology, 1999, 181 (8), 2403-2410.[17] Lovley D R. Powering microbes with electricity: Direct electron transfer from electrodes to microbes[J]. Environmental Microbiology Reports, 2011, 3(1): 27-35.[18] Rabaey K, Boon N, Verstraete W, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science and Technology, 2005, 39(9): 3401-3408.[19] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes ?avins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences, 2008, 105(10): 3968-3973.[20] Freguia S, Tsujimura S, Kano K. Electron transfer pathways in microbial oxygen biocathodes[J]. Electrochimica Acta , 2010, 55(3): 813-818.[21] Aulenta F, Canosa A, Reale P, et al. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators[J]. Biotechnology and Bioengineering, 2009, 103(1): 85-91.[22] Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6): 596-604.[23] Rosenbauma M, Aulenta F, Villano M, et al. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?[J]. Bioresource Technology, 2011, 102(1): 324-333.[24] Sakakibara Y, Kuroda M. Electric prompting and control of denitrification[J]. Biotechnology and Bioengineering, 1993, 42(4): 535-537.[25] Sakakibara Y, Flora J R V, Suidan M T, et al. Modeling of electrochemically-activated denitrifying biofilms[J]. Water Research, 1994, 28(5): 1077-1086.[26] Sakakibara Y, Araki K, Watanabe T, et al. The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater[J]. Water Science and Technology, 1997, 36(1): 61-68.[27] Kuroda M, Watanabe T, Umedu Y. Simultaneous COD removal and denitrification of wastewater by bio-electro reactors[J]. Water Science and Technology, 1997, 35(8): 161-168.[28] Islam S, Suidan M T. Electrolytic denitrification: Long term performance and effects of current intensity[J]. Water Research, 1998, 32(2): 528-536.[29] Sakakibara Y, Kusaka J. In situ autotrophic denitrification using electrode under oligotrophic conditions[C]. Proceedings of 5th International In Situ and On-site Bioremediation Symposium, San Diego, CA, 1999, 4: 73-78.[30] Kim Y H, Park Y J, Song S H, et al. Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical reactor[J]. Enzyme and Microbial Technology, 2007, 41(5): 663-668.[31] Clauwaert P, Rabaey K, Aelterman P, et al. Biological denitri?cation in microbial fuel cells[J]. Environmental Science and Technology, 2007, 41(9): 3354-3360.[32] Virdis B, Rabaey K, Yuan Z G, et al. Electron ?uxes in a microbial fuel cell performing carbon and nitrogen removal[J]. Environmental Science and Technology, 43(13): 5144-5149.[33] Virdis B, Rabaey K, Yuan Z, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal[J]. Water Research, 2008, 42(12): 3013-3024.[34] Puig S, Coma M, Desloover J, et al. Autotrophic Denitrification in microbial fuel cells treating low ionic strength waters[J]. Environmental Science and Technology, 2012, 46(4): 2309-2315.[35] Loffler F E, Edwards E A. Harnessing microbial activities for environmental cleanup[J]. Current Opinion in Biotechnology, 2006, 17(3): 274-284.[36] Aulenta F, Catervi A, Majone M, et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE[J]. Environmental Science Technology, 2007, 41(7): 2554-2559.[37] Aulenta F,Canosa A, Majone M, et al. Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system[J]. Environmental Science Technology, 2008, 42(16): 6185-6190.[38] Aulenta F, Canosa A, Roma L D, et al. Influence of mediator immobilization on the electrochemically assisted microbial dechlorination of trichloroethene (TCE) and cis-diechloroethene (cis-DCE)[J]. Journal of Chemical Technology and Biotechnology, 2009, 84(6): 864-870.[39] Aulenta F,Maio V D, Ferri T, et al. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene[J]. Bioresource Technology, 2010, 101(24): 9728-9733.[40] Strycharz S M, Woodard T L, Johnson J P, et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachloroethene by Geobacter lovleyi[J]. Applied and Environmental Microbiology, 2008, 74(19): 5943-5947.[41] Strycharz S M, Gannon S M, Boles A R, et al. Reductive dechlorination of 2-chlorophenol by?Anaeromyxobacter dehalogenans with an electrode serving as the electron donor[J]. Environmental Microbiology Reports, 2010, 2(2): 289-294.[42] Trump J I V, Coates J D. Thermodynamic targeting of microbial perchlorate reduction by selective electron donors[J]. The ISME Journal, 2009, 3: 466-476.[43] Butler C, Clauwaert P, Green S J, et al. Bioelectrochemical perchlorate reduction in a microbial fuel cell[J]. Environmental Science and Technology, 2010, 44(12): 4685-4691.[44] Gregory K B, Lovley D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes[J]. Environmental Science and Technology, 2005, 39(22): 8943-8947.[45] Wang G, Huang L P, Zhang Y F. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells[J]. Biotechnology Letters, 2008, 30:1959-1966.[46] Tandukar M, Huber S J, Onodera T, et al. Biological chromium(VI) reduction in the cathode of a microbial fuel cell[J]. Environmental Science and Technology, 2009, 43(21): 8159-8165.[47] Huang L P, Chai X L, Chen G H, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells[J]. Environmental Science and Technology, 2011, 45(11):5025-5031. [48] Huang L P, Chen J, Quan X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 937-945.[49] Huang L P, Chai X L, Cheng S A, et al. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J] . Chemical Engineering Journal, 2011, 166(2): 652-661.[50] Park D H, Laivenieks M, Guettler M V, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J]. Applied and Environmental Microbiology, 1999, 65(7): 2912-2917.[51] Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science and Technology, 2009, 43(10): 3953-3958.[52] Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresouce Technology, 2010, 101(9): 3085-3090.[53] Cao X X, Huang X, Liang P, et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction[J]. Energy and Environmental Science, 2009, 2(5): 441-548.[54] Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio, 2010, 1(2): 3-10.[55] Nevin K P, Hensley S A, Franks A E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9): 2882-2886.[56] Cordas C M, Guerra L T, Xavier C, et al. Electroactive biofilms of sulphate reducing bacteria[J] . Electrochimica Acta, 2008, 54(1): 29-34.[57] Yu L, Duan J, Zhao W, et al. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochimica Acta, 2011, 56(25): 9041-9047.[58] Su W T, Zhang L X, Tao Y, et al. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems[J]. Electrochemistry Communications, 2012, 22: 37-40. |
[1] | 郭佳瑶, 陈煅, 张杰, 詹东平. 法拉第吸脱附偶联过程循环伏安行为的有限元分析[J]. 电化学(中英文), 2020, 26(2): 281-288. |
[2] | 狄正玲, 朱 靖, 戴 磊, 孟 伟, 李跃华, 何章兴, 王 岭. ZIF-67衍生的Ag/Co@NC材料及其氧还原性能的研究[J]. 电化学(中英文), 2019, 25(6): 781-791. |
[3] | 陈家丽,张霞光,吴德印,田中群. 水助催化氢分子在金纳米粒子上解离的理论研究[J]. 电化学(中英文), 2018, 24(3): 199-206. |
[4] | 王艳凤,罗荻,陕多亮,卢小泉. 磺酸基卟啉的电化学发光研究及应用[J]. 电化学(中英文), 2017, 23(3): 307-315. |
[5] | 蔡镇锋,孙兵,江文杰,陈婷,王栋,万立骏. 燃料电池电极表界面催化氧还原反应的STM研究进展[J]. 电化学(中英文), 2016, 22(6): 561-569. |
[6] | 徐敏敏,梅金华,姚建林,顾仁敖. [BMIm]BF4/Pt电极界面激光诱导电沉积Cu基材料研究[J]. 电化学(中英文), 2016, 22(6): 577-581. |
[7] | 宋宇桥,朱华,赵光金,吴文龙,周寿斌,汪的华. CO2资源化转化纳米碳材料对硫酸盐化铅盘电极的活化性能研究[J]. 电化学(中英文), 2016, 22(4): 425-432. |
[8] | 龚忠亮, 邵将洋, 钟羽武*. 环金属钌配合物的合成、结构多样性及氧化还原调控[J]. 电化学(中英文), 2016, 22(3): 244-259. |
[9] | 张 翅,何序骏,李高仁. 具有高效电化学储能的中空网状笼还原氧化石墨烯[J]. 电化学(中英文), 2016, 22(3): 278-287. |
[10] | 李婷,杨汉西*. 电化学转换反应及其在二次电池中的应用[J]. 电化学(中英文), 2015, 21(2): 115-122. |
[11] | 林旋,程美琴,商中瑾,熊婷,张贤土,田伟,林剑云,钟起玲*,任斌. Pt纳米空球粒径的可控制备及其甲醇电催化氧化[J]. 电化学(中英文), 2014, 20(6): 571-575. |
[12] | 钱江锋,高学平,杨汉西. 电化学储钠材料的研究进展[J]. 电化学(中英文), 2013, 19(6): 523-529. |
[13] | 孙姣丽,陈志娇,李益孝,程琥*. Li2FeSiO4/C正极材料的固相合成及电化学性能[J]. 电化学(中英文), 2013, 19(6): 575-578. |
[14] | 孙文, 樊海涛, 张大霄, 胡冬洁, 周勇亮. 基于聚丙烯酰胺凝胶软印章的电化学纳米加工(英文)[J]. 电化学(中英文), 2013, 19(3): 262-266. |
[15] | 徐暘, 包彦彦, 杜龙飞, 曹殿学, 王贵领. 钙钛矿La1-xSrxCoO3的电化学电容性能[J]. 电化学(中英文), 2013, 19(2): 174-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||