电化学(中英文) ›› 2023, Vol. 29 ›› Issue (5): 2206231. doi: 10.13208/j.electrochem.2206231
所属专题: “电催化和燃料电池”专题文章
张俊明a,b,c,*(), 张小杰a,b, 陈瑶a, 房英健a, 樊友军b,*(), 贾建峰a,*()
收稿日期:
2022-06-23
修回日期:
2022-07-19
接受日期:
2023-07-21
出版日期:
2023-05-28
发布日期:
2022-07-29
Jun-Ming Zhanga,b,c,*(), Xiao-Jie Zhanga,b, Yao Chena, Ying-Jian Fanga, You-Jun Fanb,*(), Jian-Feng Jiaa,*()
Received:
2022-06-23
Revised:
2022-07-19
Accepted:
2023-07-21
Published:
2023-05-28
Online:
2022-07-29
Contact:
* Tel: (86-351)2051192, E-mail: 摘要:
低共熔溶剂(DESs)是一种用于可控合成金属纳米结构的溶剂。在氯化胆碱-尿素DESs中,使用抗坏血酸作为还原剂可以制备由交错的纳米片和纳米球组成的花状Pd纳米颗粒,并且其自发地转化为三维网络纳米结构。此纳米网状结构的形成机制也有系统的研究,其中,DESs作为溶剂和软模板用于形成3D花状钯网络纳米结构(Pd-FNNs),CTAB和NaOH的用量在Pd-FNNs的各向异性生长和生成中起着至关重要的作用。Pd较低的电催化性能是阻碍燃料电池商业化应用的主要挑战之一。然而,具有较低表面能和丰富晶界的3D Pd-FNNs对甲酸氧化反应表现出增强的电催化活性和稳定性,其质量活性和本征活性分别是商业Pd黑催化剂的2.7和1.4倍。因此,此策略为合成独特的Pd基纳米结构提供了一种可行的路径。
张俊明, 张小杰, 陈瑶, 房英健, 樊友军, 贾建峰. 低共熔溶剂辅助合成新型的网状纳米结构用于加速甲酸电氧化[J]. 电化学(中英文), 2023, 29(5): 2206231.
Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fang, You-Jun Fan, Jian-Feng Jia. Deep Euteceic Solvents-Assisted Synthesis of Novel Network Nanostructures for Accelerating Formic Acid Electrooxidation[J]. Journal of Electrochemistry, 2023, 29(5): 2206231.
[1] |
Zhang S, Xia R, Su Y, Zou Y, Hu C, Yin G, Hensen E J M, Ma X, Lin Y. 2D surface induced self-assemble of Pd nanocrystals into nanostrings for enhanced formic acid electroxidation[J]. J. Mater. Chem. A, 2020, 8(33):17128-17135.
doi: 10.1039/D0TA06171A URL |
[2] |
Ding J, Liu Z, Liu X R, Liu B, Liu J, Deng Y D, Han X P, Hu W B, Zhong C. Tunable periodically ordered mesoporosity in palladium membranes enables exceptional enhancement of intrinsic electrocatalytic activity for formic acid oxidation[J]. Angew. Chem. Int. Ed., 2020, 59(13): 5092-5101.
doi: 10.1002/anie.201914649 pmid: 31886942 |
[3] |
Huang L, Zhan M, Wang Y C, Lin Y F, Liu S, Yuan T, Yang H, Sun S G. Syntheses of carbon paper supported high-index faceted Pt nanoparticles and their performance in direct formic acid fuel cells[J]. J. Electrochem., 2016, 22(2): 123-128.
doi: 10.13208/j.electrochem.151153 URL |
[4] |
Jiang M C, Meng X M, Zhang W L, Huang H W, Wang F Q, Wang S, Ouyang Y R, Yuan W Y, Zhang L Y. Facile synthesis of heterophase sponge-like Pd toward enhanced formic acid oxidation[J]. Electrochem. Commun., 2021, 126(1): 107004-107008.
doi: 10.1016/j.elecom.2021.107004 URL |
[5] | Lv F, Huang B L, Feng J R, Zhang W Y, Wang K, Li N, Zhou J H, Zhou P, Yang W X, Du Y P, Su D, Guo S J. A highly efficient atomically thin curved PdIr bimetallene electrocatalyst[J]. Natl. Sci. Rev., 2021, 8(9): 1-11. |
[6] |
Zheng J Z, Zeng H J, Tan C H, Zhang T M, Zhao B, Guo W, Wang H B, Sun Y H, Jiang L. Coral-like PdCu alloy nanoparticles act as stable electrocatalysts for highly efficient formic acid oxidation[J]. ACS Sustainable Chem. Eng., 2019, 7(18): 15354-15360.
doi: 10.1021/acssuschemeng.9b02677 URL |
[7] |
Zhang J M, Shen L F, Jiang Y X, Sun S G. Random alloy and intermetallic nanocatalysts in fuel cell reactions[J]. Nanoscale, 2020, 12(38): 19557-19581.
doi: 10.1039/D0NR05475E URL |
[8] |
Perales-Rondon J V, Ferre-Vilaplana A, Feliu J M, Herrero E. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface[J]. J. Am. Chem. Soc., 2014, 136(38): 13110-13113.
doi: 10.1021/ja505943h pmid: 25188779 |
[9] |
Zhang J M, Wang R X, Nong R J, Li Y, Zhang X J, Zhang P Y, Fan Y J. Hydrogen co-reduction synthesis of PdPtNi alloy nanoparticles on carbon nanotubes as enhanced catalyst for formic acid electrooxidation[J]. Int. J. Hydrogen Energy, 2017, 42(10): 7226-7234.
doi: 10.1016/j.ijhydene.2016.05.198 URL |
[10] |
Shen T, Zhang J J, Chen K, Deng S F, Wang D L. Recent progress of palladium-based electrocatalysts for the formic acid oxidation reaction[J]. Energ. Fuel., 2020, 34(8): 9137-9153.
doi: 10.1021/acs.energyfuels.0c01820 URL |
[11] |
Yan Y C, Li X, Tang M, Zhong H, Huang J B, Bian T, Jiang Y, Han Y, Zhang H, Yang D R. Tailoring the edge sites of 2D Pd nanostructures with different fractal dimensions for enhanced electrocatalytic performance[J]. Adv. Sci., 2018, 5(8): 1800430-1800436.
doi: 10.1002/advs.v5.8 URL |
[12] | Ren M J, Zou L L, Chen J, Yuan T, Huang Q H, Zhang H F, Yang H, Feng S L. Electrocatalytic oxidation of formic acid on Pd/Ni heterostructured catalyst[J]. J. Electrochem., 2012, 18(6): 515-520. |
[13] |
Xiao C, Tian N, Zhou Z Y, Sun S G. Electrochemical preparations and applications of nano-catalysts with high-index facets[J]. J. Electrochem., 2020, 26(1): 61-72.
doi: 10.13208/j.electrochem.181244 URL |
[14] |
Zhang L Y, Ouyang Y, Wang S, Gong Y, Jiang M, Yuan W, Li C M. Ultrafast synthesis of uniform 4-5 atoms-thin layered tremella-like Pd nanostructure with extremely large electrochemically active surface area for formic acid oxidation[J]. J. Power Sources, 2020, 447(1): 227248-227254.
doi: 10.1016/j.jpowsour.2019.227248 URL |
[15] |
Poerwoprajitno A R, Gloag L, Cheong S, Gooding J J, Tilley R D. Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis[J]. Nanoscale, 2019, 11(9): 18995-19011.
doi: 10.1039/C9NR05802H URL |
[16] |
Xu B Y, Zhang Y, Li L G, Shao Q, Huang X Q. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond[J]. Coordin. Chem. Rev., 2022, 459(5): 214388-214419.
doi: 10.1016/j.ccr.2021.214388 URL |
[17] |
Xiao C, Lu B A, Xue P, Tian N, Zhou Z Y, Lin X, Lin W F, Sun S G. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts[J]. Joule, 2020, 4(12):2562-2598.
doi: 10.1016/j.joule.2020.10.002 URL |
[18] |
Gong Y, Liu X, Gong Y, Wu D, Xu B, Bi L, Zhang L Y, Zhao X S. Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation[J]. J. Colloid Interf. Sci., 2018, 530(11):189-195.
doi: 10.1016/j.jcis.2018.06.074 URL |
[19] |
Xu Y, Xu R, Cui J H, Liu Y, Zhang B. One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance[J]. Chem. Commun., 2012, 48(32): 3881-3883.
doi: 10.1039/c2cc00154c URL |
[20] |
Yuan T, Chen H Y, Ma X, Feng J J, Yuan P X, Wang A J. Simple synthesis of self-supported hierarchical AuPd alloyed nanowire networks for boosting electrocatalytic activity toward formic acid oxidation[J]. J. Colloid Interf. Sci., 2018, 513(3): 324-330.
doi: 10.1016/j.jcis.2017.11.012 URL |
[21] |
Zhang X F, Chen Y, Zhang L, Wang A J, Wu L J, Wang Z G, Feng J J. Poly-L-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution[J]. J. Colloid Interf. Sci., 2018, 516(4): 325-331.
doi: 10.1016/j.jcis.2018.01.046 URL |
[22] |
Cui X, Xiao P, Wang J, Zhou M, Guo W L, Yang Y, He Y J, Wang Z W, Yang Y K, Zhang Y H, Lin Z Q. Highly branched metal alloy networks with superior activities for the methanol oxidation reaction[J]. Angew. Chem. Int. Ed., 2017, 56(16): 4488-4493.
doi: 10.1002/anie.201701149 pmid: 28332755 |
[23] |
Zhang Q B, Hua Y X. Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism[J]. Phys. Chem. Chem. Phys., 2014, 16(48): 27088-27095.
doi: 10.1039/c4cp03041a pmid: 25387166 |
[24] |
Kumar-Krishnan S, Prokhorov E, Arias de Fuentes O, Ramırez M, Bogdanchikova N, Sanchez I C, Mota-Morales J D, Luna-Barcenas G. Temperature-induced Au nanostructure synthesis in a nonaqueous deep-eutectic solvent for high performance electrocatalysis[J]. J. Mater. Chem. A, 2015, 3(31): 15869-15875.
doi: 10.1039/C5TA02606G URL |
[25] |
Wagle D V, Zhao H, Baker G A. Deep eutectic solvents: sustainable media for nanoscale and functional materials[J]. Acc. Chem. Res., 2014, 47(8): 2299-2308.
doi: 10.1021/ar5000488 URL |
[26] |
Wei L, Fan Y J, Tian N, Zhou Z Y, Zhao X Q, Mao B W, Sun S G. Electrochemically shape-controlled synthesis in deep eutectic solvents—A new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity[J]. J. Phys. Chem. C, 2012, 116(2): 2040-2044.
doi: 10.1021/jp209743h URL |
[27] |
Wei L, Fan Y J, Wang H H, Tian N, Zhou Z Y, Sun S G. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation[J]. Electrochim. Acta, 2012, 76(8): 468-474.
doi: 10.1016/j.electacta.2012.05.063 URL |
[28] |
Wei L, Xu C D, Huang L, Zhou Z Y, Chen S P, Sun S G. Electrochemically shape-controlled synthesis of Pd concave disdyakis triacontahedra in deep eutectic solvent[J]. J. Phys. Chem. C, 2016, 120(29): 15569-15577.
doi: 10.1021/acs.jpcc.5b03580 URL |
[29] |
Yin X, Chen Q Y, Tian P, Zhang P, Zhang Z Y, Voyles P M, Wang X D. Ionic layer epitaxy of nanometer-thick palladium nanosheets with enhanced electrocatalytic properties[J]. Chem. Mater., 2018, 30(10): 3308-3314.
doi: 10.1021/acs.chemmater.8b00575 URL |
[30] |
Jana R, Subbarao U, Peter S C. Ultrafast synthesis of flower-like ordered Pd3Pb nanocrystals with superior electrocatalytic activities towards oxidation of formic acid and ethanol[J]. J. Power Sources, 2016, 301(1): 160-169.
doi: 10.1016/j.jpowsour.2015.09.114 URL |
[31] |
Shan J F, Lei Z, Wu W, Tan Y Y, Cheng N C, Sun X L. Highly active and durable ultrasmall Pd nanocatalyst encapsulated in ultrathin silica layers by selective deposition for formic acid oxidation[J]. ACS Appl. Mater. Interfaces, 2019, 11(46): 43130-43137.
doi: 10.1021/acsami.9b13451 URL |
[32] |
Huang H W, Ruditskiy A, Choi S I, Zhang L, Liu J Y, Ye Z Z, Xia Y N. One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties[J]. ACS Appl. Mater. Interfaces, 2017, 9(36): 31203-31212.
doi: 10.1021/acsami.7b12018 URL |
[33] |
Saravani H, Farsadrooh M, Mollashahi M S, Hajnajafi M, Douk A S. Two-dimensional engineering of Pd nanosheets as advanced electrocatalysts toward formic acid oxidation[J]. Int. J. Hydrogen Energ., 2020, 45(41): 21232-21240.
doi: 10.1016/j.ijhydene.2020.05.072 URL |
[34] |
Lou Y Y, Xiao C, Fang J, Sheng T, Ji L, Zheng Q, Xu B B, Tian N, Sun S G. The high activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination[J]. Phys. Chem. Chem. Phys., 2022, 24(6): 3896-3904.
doi: 10.1039/D1CP04975E URL |
[35] |
Yu N F, Tian N, Zhou Z Y, Sheng T, Lin W F, Ye J Y, Liu S, Ma H B, Sun S G. Pd nanocrystals with continuously tunable high-index facets as a model nanocatalyst[J]. ACS Catal., 2019, 9(4): 3144-3152.
doi: 10.1021/acscatal.8b04741 URL |
[36] |
Xiao C, Tian N, Li W Z, Qu X M, Du J H, Lu B A, Xu B B, Zhou Z Y, Sun S G. Shape transformations of Pt nanocrystals enclosed with high-index facets and low-index facets[J]. CrystEngComm, 2021, 23(38): 6655-6660.
doi: 10.1039/D1CE00949D URL |
[37] |
Shen T, Chen S J, Zeng R, Gong M X, Zhao T H, Lu Y, Liu X P, Xiao D D, Yang Y, Hu J P, Wang D L, Xin H L, Abruna H D. Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic[J]. ACS Catal., 2020, 10(17): 9977-9985.
doi: 10.1021/acscatal.0c01537 URL |
[38] |
Shi Y F, Lyu Z H, Cao Z M, Xie M H, Xia Y N. How to remove the capping agent from Pd nanocubes without destructing their surface structure for the maximization of catalytic activity?[J]. Angew. Chem. Int. Ed., 2020, 59(43): 19129-19135.
doi: 10.1002/anie.v59.43 URL |
[39] |
Rettenmaier C, Aran-Ais R M, Timoshenko J, Rizo R, Jeon H S, Kuhl S, Chee S W, Bergmann A, Cuenya B R. Enhanced formic acid oxidation over SnO2‑decorated Pd nanocubes[J]. ACS Catal., 2020, 10(1): 14540-14551.
doi: 10.1021/acscatal.0c03212 URL |
[40] |
Mondal S, Raj C R. Electrochemical dealloying-assisted surface-engineered Pd-based bifunctional electrocatalyst for formic acid oxidation and oxygen reduction[J]. ACS Appl. Mater. Interfaces, 2019, 11(15): 14110-14119.
doi: 10.1021/acsami.9b00589 URL |
[41] |
Wang W C, He T O, Yang X L, Liu Y M, Wang C Q, Li J, Xiao A D, Zhang K, Shi X T, Jin M S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation[J]. Nano Lett., 2021, 21(8): 3458-3464.
doi: 10.1021/acs.nanolett.1c00074 pmid: 33825464 |
[42] |
Shi W, Park A H, Xu S, Yoo P J, Kwon Y U. Continuous and conformal thin TiO2-coating on carbon support makes Pd nanoparticles highly efficient and durable electrocatalyst[J]. Appl. Catal. B-Environ., 2021, 284(5): 119715-119724.
doi: 10.1016/j.apcatb.2020.119715 URL |
[1] | 吴炜星, 王莹. 乙烯在钯圆盘电极的电化学氧化研究[J]. 电化学(中英文), 2023, 29(1): 2215004-. |
[2] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[3] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[4] | 王昊, 曹晓舟, 薛向欣. 锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究[J]. 电化学(中英文), 2022, 28(4): 2103071-. |
[5] | 滕雪, 牛艳丽, 巩帅奇, 刘璇, 陈作锋. 碳层网络促进Sn/SnO2纳米颗粒选择性CO2还原[J]. 电化学(中英文), 2022, 28(2): 2108441-. |
[6] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[7] | 胡守训, 李亮, 杨俊豪, 李刘强, 靳志豪. 金属钯插层类水滑石的制备及其电催化乙醇的性能研究[J]. 电化学(中英文), 2021, 27(1): 100-107. |
[8] | 江恒, 范镜敏,郑明森,董全峰. Co3(HCOO)6@rGO 作为锂离子电池负极材料的研究[J]. 电化学(中英文), 2018, 24(3): 207-215. |
[9] | 孙雍荣,杜春雨,韩国康,王雅静,高云智,尹鸽平. 可见光诱导提升Pt/g-C3N4纳米片甲酸氧化性能的研究[J]. 电化学(中英文), 2018, 24(3): 262-269. |
[10] | 张媛媛,易清风,左葛琨琨,邹涛,刘小平,周秀林. 铅修饰的纳米多孔铂催化剂对甲酸氧化的电活性[J]. 电化学(中英文), 2018, 24(3): 270-278. |
[11] | 邹涛,易清风,张媛媛,刘小平,徐国荣,聂会东,周秀林. Pd/Fe3O4-C催化剂对甲醇、乙醇和丙醇氧化的电催化活性[J]. 电化学(中英文), 2017, 23(6): 708-717. |
[12] | 林晓东,陈杜宏,田中群. 壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究[J]. 电化学(中英文), 2016, 22(6): 570-576. |
[13] | 黄龙,詹梅,王宇成,林燕芬,刘硕,袁婷,杨辉,孙世刚. 碳纸负载高指数晶面铂纳米粒子的制备及其在直接甲酸燃料电池中的催化性能研究[J]. 电化学(中英文), 2016, 22(2): 123-128. |
[14] | 王 莉,樊友军,韦 露,刘海霞,孙世刚. 镧在低共熔溶剂中的电沉积研究[J]. 电化学(中英文), 2015, 21(6): 543-547. |
[15] | 王龙龙, 曹晓璐, 王亚骏, 平金豪, 李巧霞. Pd-Sb/C复合纳米催化剂对甲酸电催化氧化的性能研究[J]. 电化学(中英文), 2015, 21(4): 368-374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||