[1] Wang Y C(王玉灿), Ma Y(马瑛), Meng M Y(孟明扬), et al. A Study on the Preparation of 2,5-Dichlorophenol [J]. Dyestuffs and Coloration(染料与染色), 2012, 49(3): 15-6.
[2] Lu Z X(陆志勋), Lv Y W(吕延文). A Novel Synthesis Method of 2,5-Dichlorophnol [J]. Chemical Production and Technology(化学生产与技术), 2010, 17(2): 16-7.
[3] Zhu X Y(朱兴一), Chen Y Y(陈媛媛), Li F(李锋), et al. Continuous Synthesis of 2,5-Dichlorophenol [J]. Chinese Journal of Synthetic Chemistry(合成化学), 2014, 22(1): 88-90.
[4] Hans J. Contributions of organic electrosynthesis to green chemistry [J]. Comptes Rendus Chimie, 2011, 14(7): 745-65.
[5] Pletcher D. Organic Electrosynthesis [M]. Springer Netherlands, 2014.
[6] Pitner W R, Seddon K R, Stack K M, et al. Electrosynthesis of organic compounds [M]. US. 2011.
[7] Fujimoto K, Tokuda Y, Maekawa H, et al. Selective and one-pot formation of phenols by anodic oxidation [J]. Tetrahedron, 1996, 52(11): 3889-96.
[8] Chatzisymeon E, Dimou A, Mantzavinos D, et al. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode [J]. Journal of Hazardous Materials, 2009, 167(1-3):268-274.
[9] Miyata M, Ihara I, Yoshid G, et al. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry [J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2011, 63(3): 456-61.
[10] Zaviska F, Drogui P, Blais J F, et al. Electrochemical Oxidation of Chlortetracycline Using Ti/IrO2 and Ti/PbO2 Anode Electrodes: Application of Experimental Design Methodology [J]. Journal of Environmental Engineering, 2013, 139(6): 810-21.
[11] Li X, Guo Z, Du L, et al. Decolourization and degradation of C.I. Acid Red 73 by anodic oxidation and the synergy technology of anodic oxidation coupling nanofiltration [J]. Electrochimica Acta, 2013, 97(5): 150-9.
[12] Jara C C, Salazar-Banda G R, Arratia R S, et al. Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent [J]. Chemical Engineering Journal, 2011, 171(3): 1253-62.
[13] Samet Y, Agengui L, Abdelh D R. Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes [J]. Chemical Engineering Journal, 2010, 161(1–2): 167-72.
[14] Xu L, Xin Y, Wang J. A comparative study on IrO2–Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochimica Acta, 2009, 54(6): 1820-5.
[15] Malpass G R P, Neves R S, Motheo A J. A comparative study of commercial and laboratory-made Ti/Ru0.3Ti 0.7O2, DSA®; electrodes:“In situ” and “ex situ” surface characterisation and organic oxidation activity[J]. Electrochimica Acta, 2006, 52(3):936-944.
[16] Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol [J]. Journal of Environmental Sciences, 2007, 19(11): 1380-6.
[17] Zhang Z, Sun Q Q, Si Y P. Degradation Properties of Ti/Sb-SnO2 Electrodes Containing Different Intermediate Layers for Phenol [J]. Materials Science Forum, 2013, 743-744: 420-6.
[18] Huang Y C(黄永昌), Ye H J(叶慧娟), Zhang Y H(章燕豪). A Survey on the Functional Mechanism of Ti-SnO2 Layer in a Ti-supported Lead Dioxide Electrode [J]. Journal of Shanghai Jiaotong University(上海交通大学学报), 1982(4): 28-37. |