[1] |
Wang B, Ruan T T, Chen Y, Jin F, Peng L, Zhou Y, Wang D L, Dou S X. Graphene-based composites for electrochemical energy storage[J]. Energy Stor. Mater., 2020, 24: 22-51.
|
[2] |
Guo R Q, Zhang L X, Lu Y, Zhang X L, Yang D J. Research progress of nanocellulose for electrochemical energy storage: A review[J]. J. Energy Chem., 2020, 51: 342-361.
doi: 10.1016/j.jechem.2020.04.029
|
[3] |
Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nat. Commun., 2016, 7: 12647.
doi: 10.1038/ncomms12647
pmid: 27600869
|
[4] |
Harpak N, Davidi G, Patolsky F. Self-transforming stainless-steel into the next generation anode material for lithium ion batteries[J]. J. Energy Chem., 2022, 64: 432-441.
doi: 10.1016/j.jechem.2021.05.008
|
[5] |
Zhang M D, Chen B, Wu M B. Research progress in graphene as sulfur hosts in lithium-sulfur batteries[J]. Acta Phys-Chim. Sin., 2022, 38(2): 2101001.
|
[6] |
Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. J. Electrochem., 2020, 26(4): 443-463.
|
[7] |
Huang J H, Wang Y G, Xia Y Y. Research progress of new energy storage electrochemical power sources[J]. Chinese J. Power Sources, 2020, 44(6): 793-798.
|
[8] |
Chen J P, Chen C X, Hu Z G. Review of Li-ion battery energy storage system[J]. Battery Bimonthly, 2019(1), 49: 79-82.
|
[9] |
Carvalho W M, Cassayre L, Quaranta D, Chauvet F, El-Hage R, Tzedakis T, Biscans B. Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery[J]. J. Energy Chem., 2021, 61: 436-445.
doi: 10.1016/j.jechem.2021.01.040
|
[10] |
Xu T, Du H S, Liu H Y, Liu W, Zhang X Y, Si C L, Liu P W, Zhang K. Advanced nanocellulose-based composites for flexible functional energy storage devices[J]. Adv. Mater., 2021, 33(48): 2101368.
doi: 10.1002/adma.v33.48
URL
|
[11] |
Wu J, Liu X T, Meng J H, Lin M Q. Cloud-to-edge based state of health estimation method for Lithium-ion battery in distributed energy storage system[J]. J. Energy Storage, 2021, 41: 102974.
doi: 10.1016/j.est.2021.102974
URL
|
[12] |
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria R P, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. J. Power Sources, 2014, 257: 421-443.
doi: 10.1016/j.jpowsour.2013.11.103
URL
|
[13] |
Azam M A, Safie N E, Ahmad A S, Yuza N A, Zulkifli N S A. Recent advances of silicon, carbon composites and tin oxide as new anode materials for lithium-ion battery: A comprehensive review[J]. J. Energy Storage, 2021, 33: 102096.
doi: 10.1016/j.est.2020.102096
URL
|
[14] |
Wang Q Y, Liu B, Shen Y H, Wu J K, Zhao Z Q, Zhong C, Hu W B. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Adv. Sci., 2021, 8(17): 2101111.
doi: 10.1002/advs.v8.17
URL
|
[15] |
Mao E Y, Wang L, Sun Y M. Advances in alloy-based high-capacity Li-containing anodes for lithium-ion batteries[J]. Chem. J. Chinese U., 2021, 42(5): 1552-1568.
|
[16] |
Sun Y G, Tang J, Zhang K, Yuan J S, Jing L A, Zhu D M, Ozawa K, Qin L C. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries[J]. Nanoscale, 2017, 9(7): 2585-2595.
doi: 10.1039/c6nr07650e
pmid: 28150823
|
[17] |
Lin X, Pan F, Wang H. Progress of Li4Ti5O12 anode material for lithium ion batteries[J]. Mater. Technol., 2014, 29(A2): A82-A87.
doi: 10.1179/1753555714Y.0000000170
URL
|
[18] |
Liang Z Y, Lin Z P, Zhao Y M, Dong Y Z, Kuang Q, Lin X H, Liu X D, Yan D L. New understanding of Li3VO4/C as potential anode for Li-ion batteries: preparation, structure characterization and lithium insertion mechanism[J]. J. Power Sources, 2015, 274: 345-354.
doi: 10.1016/j.jpowsour.2014.10.024
URL
|
[19] |
Li H Q, Liu X Z, Zhai T Y, Li D, Zhou H S. Li3VO4: A promising insertion anode material for lithium-ion batteries[J]. Adv. Energy Mater., 2013, 3(4): 428-432.
doi: 10.1002/aenm.v3.4
URL
|
[20] |
Huu H T, Vu N H, Ha H, Moon J, Kim H Y, Bin Im W. Sub-micro droplet reactors for green synthesis of Li3VO4 anode materials in lithium ion batteries[J]. Nat. Commun., 2021, 12(1): 3081.
doi: 10.1038/s41467-021-23366-8
|
[21] |
Zhu L M, Li Z, Ding G C, Xie L L, Miao Y X, Cao X Y. Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries[J]. J. Mater. Sci. Technol., 2021, 89: 68-87.
doi: 10.1016/j.jmst.2021.02.020
URL
|
[22] |
Liu X Q, Li G S, Qian P X, Zhang D, Wu J J, Li K, Li L P. Carbon coated Li3VO4 microsphere: ultrafast solvothermal synthesis and excellent performance as lithium-ion battery anode[J]. J. Power Sources, 2021, 493: 229680.
doi: 10.1016/j.jpowsour.2021.229680
URL
|
[23] |
Liu W J, Zhang X, Li C, Wang K, Sun X Z, Ma Y W. Carbon-coated Li3VO4 with optimized structure as high capacity anode material for lithium-ion capacitors[J]. Chinese Chem. Lett., 2020, 31(9): 2225-2229.
doi: 10.1016/j.cclet.2019.11.015
URL
|
[24] |
Song H Q, Zhang C P, Liu Y G, Liu C F, Nan X H, Cao G Z. Facile synthesis of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries[J]. J. Power Sources, 2015, 294: 1-7.
doi: 10.1016/j.jpowsour.2015.06.055
URL
|
[25] |
Tao Y, Yi D Q, Li J. Electrochemical formation of crystalline Li3VO4/Li4SiO4 solid solutions film[J]. Solid State Ionics, 2008, 179(40): 2396-2398.
doi: 10.1016/j.ssi.2008.09.017
URL
|
[26] |
Brehm S, Himcinschi C, Kraus J, Bock-Seefeld B, Aneziris C, Kortus J. Raman spectroscopic characterization of environmentally friendly binder systems for carbon-bonded filters[J]. Adv. Eng. Mater., 2021, 24(2): 2100544.
doi: 10.1002/adem.v24.2
URL
|
[27] |
Shi Y, Wang J Z, Chou S L, Wexler D, Li H J, Ozawa K, Liu H K, Wu Y P. Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries[J]. Nano Lett., 2013, 13(10): 4715-4720.
doi: 10.1021/nl402237u
pmid: 24024651
|
[28] |
Liu J, Lu P J, Liang S Q, Liu J, Wang W J, Lei M, Tang S S, Yang Q. Ultrathin Li3VO4 nanoribbon/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties[J]. Nano Energy, 2015, 12: 709-724.
doi: 10.1016/j.nanoen.2014.12.019
URL
|
[29] |
Li Q D, Wei Q L, Wang Q Q, Luo W, An Q Y, Xu Y N, Niu C J, Tang C J, Mai L Q. Self-template synthesis of hollow shell-controlled Li3VO4 as a high-performance anode for lithium-ion batteries[J]. J. Mater. Chem. A., 2015, 3(37): 18839-18842.
doi: 10.1039/C5TA05594F
URL
|
[30] |
Jian Z L, Zheng M B, Liang Y L, Zhang X X, Gheytani S, Lan Y C, Shi Y, Yao Y. Li3VO4 anchored graphene nanosheets for long-life and high-rate lithium-ion batteries[J]. Chem. Commun., 2015, 51(1): 229-231.
doi: 10.1039/C4CC07444K
URL
|
[31] |
Zhang C K, Song H Q, Liu C F, Liu Y G, Zhang C P, Nan X H, Cao G Z. Fast and reversible Li ion insertion in carbon-encapsulated Li3VO4 as anode for lithium-ion battery[J]. Adv. Funct. Mater., 2015, 25(23): 3497-3504.
doi: 10.1002/adfm.v25.23
URL
|