电化学(中英文) ›› 2022, Vol. 28 ›› Issue (6): 2104481. doi: 10.13208/j.electrochem.210448
收稿日期:
2021-12-28
修回日期:
2022-03-14
出版日期:
2022-06-28
发布日期:
2022-06-28
通讯作者:
刘仁志,王翀
E-mail:taso@vip.sina.com;wangchong@uestc.edu.cn
Ren-Zhi Liu1,*(), Ping-Ling Xie2,3, Chong Wang2,3,*()
Received:
2021-12-28
Revised:
2022-03-14
Published:
2022-06-28
Online:
2022-06-28
Contact:
Ren-Zhi Liu, Chong Wang
E-mail:taso@vip.sina.com;wangchong@uestc.edu.cn
摘要:
电沉积铜箔随着印刷线路板和锂离子电池的大量应用而越来越受到重视,产业规模仍在发展中。相对于电镀设备的制造和电沉积工艺的开发,但有关电沉积的机理方面的研究较少。本文总结了电沉积铜箔的制造过程并分析了不同电沉积铜技术中各电镀参数的差异,指出电沉积电流密度在铜箔形成过程中的重要作用。通过展示和比较不同电沉积铜箔的微观组织结构,讨论了电沉积中各影响因素对铜箔微观组织结构以及对其宏观机械性能的影响。从前人研究结果中发现电沉积条件和镀液组分对铜箔微观组织形貌及其宏观机械性能有重大影响,但电解铜箔的晶粒大小、织构等微观组织结构参数与其宏观机械性能间无法建立起有效的关联,这对以镀层的微观组织结构为桥梁来建立电沉积条件对铜箔宏观机械性能的理论框架带来极大的困扰。前人试图通过研究铜箔电沉积机理来解决这一难题。经典金属电沉积理论认为提高过电位能够增加瞬时成核数量并降低晶粒平均尺寸,但无法解释结晶中择优取向等问题。渡边辙发现电沉积与冶金的相似性,认为电沉积金属的微观组织结构与金属熔点相关,但其“微观结构控制”理论还存在一些缺陷,例如无法解释添加剂对晶粒的细化作用等。笔者建议可从价键及能带理论角度重塑电沉积机理与铜箔宏观性能间的关系,既通过建立铜箔电沉积过程中金属键形成与铜显微组织结构的理论联系,探讨其对铜箔宏观特性的影响。
刘仁志, 谢平令, 王翀. 电沉积铜箔的微观组织结构——三维电结晶模式中的电结晶机理探讨[J]. 电化学(中英文), 2022, 28(6): 2104481.
Ren-Zhi Liu, Ping-Ling Xie, Chong Wang. Microstructure of Electrodeposited Copper Foil: Discussion on the Mechanism Model of Three-Dimensional Electrocrystallization[J]. Journal of Electrochemistry, 2022, 28(6): 2104481.
表1
电解沉积电子电路铜箔和常规酸铜电镀的主要操作参数比较[21,22]
Main operational parameter | Electrodeposited copper foil | General acid copper electroplating |
---|---|---|
Concentration of inorganics Cu2+(g·L-1)/H2SO4(g·L-1) /Cl-(mg·L-1) | 65 ~ 100 / 90 ~ 140 / 40 | 15 ~ 50 / 50 ~ 250 / 60 |
Additives | Natural reagent: collagen, gelatin, etc. | Artificial reagent: PEG,SPS,JGB, etc. |
Temperature (oC) | 55 ~ 80 | 18 ~ 30 |
Current density (A·dm-2) | 35 ~ 130 | 1 ~ 3 |
表2
电子电镀铜、电子电路铜箔和锂电铜箔的微观结构差异及分析
Type | Reference | Average grain size | Dominant crystal plane orientation | Analysis |
---|---|---|---|---|
Acid electroplating copper | [44], [45] | 15 ~ 40 nm; > 1 μm | Mostly (111) crystal plane | 1. The copper foil with excellent mechanical pro- perties has no absolute co- rrelation with the orienta- tion of the dominant crys- tal plane. Different domin- minant crystal planes can obtain high tensile streng- th (> 400 MPa) and elong- ation (> 4.0%). 2. Small grain size (tens of nanometers) has high elongation (> 5.0%), but large grains can also ob- tain copper foil with high elongation. |
Electronic circuit copper foil | [11], [33], [46] | 0.57 ~ 0.97 μm | (220), (111) | |
Lithium battery copper foil | [47], [48], [11], [49], [50], [32] | 35 nm ~ 14 μm | (200), (220), (111) |
[1] | Liu R Z(刘仁志). Quantum electrochemistry and electroplating technology[M]. Beijing: China Building Materials Industry Press(中国建材工业出版社), 2021: 4-6. |
[2] | Electrochemical Society. Electrochemical fact sheet[M]. Tokyo: Maruzen Corporation, 1964: 1-10. |
[3] | Zhang Y Q(张永清), Ji Y S(吉毅松), Sun L H(孙丽红). An introduction to the development of electrodeposited green foil machines and copper foils at home and abroad[J]. J. Hebei Inst. Archit. Civ. Eng.(河北建筑工程学院学报), 2013, 31(04): 80-82. |
[4] | Kondo K, Akolkar R N, Barkey D P, Yokoi M. Copper electrodeposition for nanofabrication of electronics devices[M]. Springer Science, New York, 2014: 85-88 |
[5] | Zhu R L(朱若林), Song y(宋言), Dai Z Y(代泽宇), Lin Y(林毅), Huang Y F(黄永发). Effects of gelatin and bis-(sodium sulfopropyl)-disulfide on properties of thick electrolytic copper foil[J]. Electroplating & Finishing(电镀与涂饰), 2021, 40(13): 1027-1030. |
[6] | Du R B(杜荣斌), Liu L J(刘励昀), Wu X(吴夏), Liu T(刘涛), Chen Y(陈杨), Lu B H(陆冰沪). Effects of additives N, N-diethylthiourea, PEG, Cl- - on electrocrystallization behavior of high tensile electrolytic copper foil[J]. Mater. Protec.(材料保护), 2021, 54(4): 7-14. |
[7] | Lu B H(陆冰沪), Shi H J(师慧娟), Li D S(李大双), Wu B(吴斌), Liu Y(刘耀), Fan X W(樊小伟), Tang Y Z(唐云志). Review on the effect of chloride ion on production of electrolytic copper foil[J]. Electroplating & Finishing(电镀与涂饰), 2019, 38(24): 1324-1328. |
[8] | Zhou S M(周绍民). Metal electrodeposition: principles and research methods[M]. Shanghai Science and Technology Press(上海科学技术出版社), 1987: 284-305. |
[9] | Fang J L(方景礼). Theory & application of coordination compounds in electroplating[M]. Chemical Industry Press(化学工业出版社), 2007: 219-224. |
[10] | Frumkin A H. Electrode process kinetics[M]. Beijing: Science Press, 1965: 239-249. |
[11] | Huang J L(黄家龙). Studies of additives of electrolyzing copper foil and fast electrocrystallization of copper in the additives presence[D]. Guangdong: South China University of Technology, 2013. |
[12] | Wang Q F(王庆福), Li Y E(李应恩), Fan B F(樊斌锋). Study on additive for 6 μm electrolytic copper foil used in lithium battery[J]. Electroplat. Pollut. Control(电镀与环保), 2020, 40(3): 23-26. |
[13] | Deng K(邓可). Production technology and market analysis of electrolytic copper foil for lithium-ion batteries[J]. Nonferrous Met. Process.(有色金属加工), 2021, 50(6): 8-9+25. |
[14] | Leng D G(冷大光). The operation status and development trend of China electronic copper foil industry in 2020[J]. Printed Circuit Board Info.(印制电路资讯), 2021, 5: 53-64. |
[15] | Shi H J(师慧娟), Lu B H(陆冰沪), Fan X W(樊小伟), Li D S(李大双), Zheng X W(郑小伟), Liu Y(刘耀), Tan Y H(谭育慧), Tang Y Z(唐云志). Research progress of electrodeposited copper foil surface treatment technology and additives[J]. Chin. J. of Nonferrous Met.(中国有色金属学报), 2021, 31(5): 1270-1284. |
[16] | Wang H Z(王海振), Hu X R(胡旭日). Effects of additives for acid copper plating on electrolytic copper foils being bright on both sides for fabrication of lithium-ion batteries[J]. Electroplating & Finishing(电镀与涂饰), 2019, 38(8): 335-337. |
[17] | He T S(何铁帅), Fan B F(樊斌锋), Peng X L(彭肖林), He J J(何佳佳). Study on the technology of extremely thin electrolytic copper foil with high safety performance used in lithium battery[J]. Shandong Industrial Technology(山东工业技术), 2020, 6: 124-127. |
[18] | Zhou W M(周文木), Hu Z H(胡智宏). Research on measuring methods for ED copper foil by the PCB enterprises[J]. Printed Circuit Info.(印制电路资讯), 2021, 29(12): 6-12. |
[19] | Jin R T(金荣涛). The production of electrolytic copper foil[M]. Central South University Press(中南大学出版社), 2010: 103-116. |
[20] | Chu R Z(储仁志). The ptoduction technology of electrolytic copper foil[J]. Mod. Chem. Ind.(现代化工), 1995, 15(8): 16-19. |
[21] | Dong Q(董强). Investigation on the technique of acid bright copper plating[D]. Hubei: Wuhan Research Institute of Materials Protection, 2007: 4-8. |
[22] | Yang S F(阳声富). Preparation of low-profile electrolytic copper foil for Li-ion battery and surface treatment process research[D]. Guangdong: South China University of Technology, 2015. |
[23] | Wen W(文雯), Zhou G Y(周国云), Wang C(王翀), He W(何为), Zhang R J(张仁军), Ai K H(艾克华), Li Q H(李清华), Ma C Y(马朝英), Guo Sh(郭珊). Research on surface roughening treatment of electrodeposited copper foil for 5G communication[J]. Printed Circuit Info.(印制电路资讯), 2021, 29(S2): 358-364. |
[24] | Hu X R(胡旭日), Wang H Z(王海振), Xu H Q(徐好强), Xu C(徐策), Wang W H(王维河). Multistep roughening of electrolytic copper foil in additive-free bath[J]. Electro-plating & Finishing(电镀与涂饰), 2015, 34(1): 20-24. |
[25] | Zhu R L(朱若林), Dai Z Y(代泽宇), Song Y(宋言), Huang Y F(黄永发), Liu C S(刘常升). Effect of bis-(sodium sulfopropyl)-disulfide on properties of high tensile strength copper foil for Li-ion battery[J]. Electroplating & Finishing(电镀与涂饰), 2021, 40(16): 1250-1253. |
[26] | Cai F M(蔡芬敏). The influence of electro-deposition parameters on microstructure and mechanical properties of electrolytic copper foils[D]. Nanchang: Nanchang University, 2011: 22-27. |
[27] | Liu L J(刘励昀). Study on the action mechanism of high efficient additives for acidic copper plating[D]. Anhui: Anqing Normal University, 2021. |
[28] |
Smirnov B N, Kozhanov V N, Chuprakov V N. Specific features of crystal structure and surface topography of copper electrolytic foils for printed-circuit boards[J] Russ. J. Appl. Chem., 2001, 74(11): 1821-1828.
doi: 10.1023/A:1014868005885 URL |
[29] |
Kurihara H, Kondo K, Okamoto Y. Effect of titanium cathode surface condition on initial copper deposition during electrolytic fabrication of copper foil[J]. J. Chem. Eng. Jpn., 2010, 43(7): 612-617.
doi: 10.1252/jcej.43.612 URL |
[30] | Yi G B(易光斌), Yang X J(杨湘杰), Peng W Y(彭文屹), Huang Y F(黄永发), Wang P(王平), Li Z Y(黎志勇). Influence of copper ion concentration on microstructure and performance of electrolytic copper foil[J]. Electroplating & Finishing(电镀与涂饰), 2015, 34(7): 371-374. |
[31] | Li J(李俊). Studies of additives and electrolytic technology of electrolyzing copper foil[D]. Guangdong: South China University of Technology, 2011. |
[32] | Liu L, Bu Y, Sun Y, Pan J, Fang Y, Liu J, Ma J. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils[J]. J. Mat. Sci. and Tech., 2021, 74: 237-245. |
[33] | Cheng X(程曦). Study on the effects of electrolytic process on microstructure and properties of electrolytic copper foils[D]. Beijing: General Research Institute for Nonferrous Metals, 2019. |
[34] | Han G Q(韩国强), Qin L J(秦丽娟), Sun N L(孙宁磊), Liu G(刘国), Wang K T(王魁珽). Preparation, micro-structure and performance of double shiny ultra-thin electrolytic copper foil[J]. China Nonferrous Metall.(中国有色冶金), 2021, 50(4): 13-18. |
[35] | Ma X L(马秀玲), Li Y Z(李永贞), Yao E D(姚恩东), Wang W J(王武军), Xie X S(解祥生), Qi S L(祁善龙), Cheng X(程曦), Li Y F(李艳锋), Huang G J(黄国杰), Yin X Q(尹向前). Microstructure and properties of electrolytic copper foils with different thicknesses[J]. Rare Metal Mat. Eng.(稀有金属材料与工程), 2019, 48(9): 2905-2909. |
[36] | Patrick S. A guide to designing copper-foil inductors[J]. J. Power. Electron., 2007, 33(7): 78-85. |
[37] | Tang Z Y(唐致远), He Y B(贺艳兵), Liu Y G(刘元刚), Liu Q(刘强), Yang X X(阳晓霞). Effects of copper foil as cathode current collector on performance of li-ion batteries[J]. Corros. Sci. Prot. Technol.(腐蚀科学与防护技术), 19(4): 265-268. |
[38] |
Kondo K, Murakami H. Crystal growth of electrolytic Cu foil[J]. J. Electrochem. Soc., 2004, 151(7): C514-C518.
doi: 10.1149/1.1756883 URL |
[39] | Shi W J(师慧娟). Detection of additives in electrolytic copper foil plating bath and research on anti-corrosion performance[D]. Jiangxi: Jiangxi University of Science and Technology, 2021. |
[40] | Song Y(宋言), Zhu R L(朱若林), Lin Y(林毅), Dai Z Y(代泽宇). Application of N-allylthiourea in the preparation of electrolytic copper foil[J]. Electroplat. Finish.(电镀与涂饰), 2022, 41(3): 197-202. |
[41] | Zhu R L(朱若林), Dai Z Y(代泽宇), Song Y(宋言), Lin y(林毅). Effects of sulfur-containing organic additives on the microstructure and properties of electrolytic copper foils[J]. Copper Eng.(铜业工程), 2021, 5: 1-4. |
[42] | Fang Y C(方亚超), Pang M X(潘明熙), Huang H(黄惠), Shao Y L(邵延林), He Y P(何亚鹏), Chen B M(陈步明), Guo Z C(郭忠诚). Current situation and prospect of additives in copper electrolysis deposition process[J]. Min. Metal(矿冶), 2021, 30(5): 61-69. |
[43] | Wang C(王翀). Priciple and application of copper electro deposition[M]// He W(何为), Wang S X (王守绪). Advanced technology of printed circuit and printed electronics (volume 2)(印制电路与印制电子先进技术(下册)). Bejing: Science Press, 2016: 25-61. |
[44] |
Hasegawa M, Nonaka Y, Negishi Y, Okinaka Y, Osaka T. Enhancement of the ductility of electrodeposited copper films by room-temperature recrystallization[J]. J. Electrochem. Soc., 2006, 153(2): C117-C120.
doi: 10.1149/1.2149299 URL |
[45] |
Alshwawreh N, Militzer M, Bizzotto D, Kuo J C. Resistivity-microstructure correlation of self-annealed electro-deposited copper thin films[J]. Microelectron. Eng., 2012, 95: 26-33.
doi: 10.1016/j.mee.2012.02.035 URL |
[46] |
Wang S P, Wei K X, Wei W, Du Q B, Alexandrov I V. Enhancing surface roughness and tensile strength of electrodeposited copper foils by composite additives[J]. Phys. Status Solidi A, 2022, 219(5): 2100735.
doi: 10.1002/pssa.202100735 URL |
[47] | Fan X W(樊小伟). Study on microstructure and mechanical properties of ultra-thin electrolytic copper foil and surface treatment technology[D]. Jiangxi: Jiangxi University of Science and Technology, 2021. |
[48] | Huang J D(黄金豆). Study of Cl--DPS-NP-n and Cl--B-AEO-n additive series for high performance copper foil[D]. Guangdong: South China University of Technology, 2016. |
[49] |
Zhang J L, Chen H B, Fan B F, Shan H P, Chen Q, Jiang C H, Hou G Y, Tang Y P. Study on the relationship between crystal plane orientation and strength of electrolytic copper foil[J]. J. Alloys Compd., 2021, 884: 161044.
doi: 10.1016/j.jallcom.2021.161044 URL |
[50] |
Yu W Y, Lin C Y, Li Q Y, Zhang J Q, Yang P X, An M Z. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current[J]. J. Appl. Electrochem., 2021, 51(3): 1-13.
doi: 10.1007/s10800-020-01525-x URL |
[51] | Wen W(文雯). Preparation and application research of ultra-thin carrier-attached copper foil[D]. Sichuan: University of Electronic Science and Technology of China, 2022. |
[52] | Zhu K(朱凯). Investigation and application of metal deposition for the electrical interconnection structure of electronic components[D]. Sichuan: University of Electronic Science and Technology of China, 2020: 57-59. |
[53] | Li S J(李溯杰). Electrodeposition preparation, properties and characterization of nanotwinned copper foil for lithium batteries[D]. Jiangsu: Jiangsu University of Science and Technology, 2019. |
[54] | Su Y D(苏亚东). Electrochemical tuning of copper grain growth and its application for electronic interconnection[D]. Sichuan: University of Electronic Science and Technology of China, 2020. |
[55] | Lai Z Q(赖志强). Research and application of high speed copper electroplating for the interconnection micro-holes of printed circuit board[D]. Sichuan: University of Electronic Science and Technology of China, 2020: 111-114. |
[56] | Kim M J, Park H S. Microstructure analysis of 8 μm electrolytic Cu foil in plane view using EBSD and TEM[J]. Appl. Micro., 2022, 52(1): 2. |
[57] | Li S J(李溯杰). Electrodeposition preparation, properties and characterization of nanotwinned copper foil for lithium batteries[D]. Jiangsu: Jiangsu University of Science and Technology, 2019. |
[58] | Dai M W(代明伟), Hu H(胡浩), Song K X(宋克兴), Cheng H Y(程浩艳), Lu W W(卢伟伟), Zhang Y M(张彦敏), Xu J(徐静), Feng Q(冯庆), Yang X K(杨祥魁). Effects of chloride ion mass concentration and electric field strength on properties of electrolytic copper foil[J]. J. Henan. Univ. Sci. Tech.(Nat. Sci.)(河南科技大学学报(自然科学版)), 2022, 43(1): 1-6+12+117. |
[59] | Dong J W(董景伟), Niu J J(牛晶晶), Fan B F(樊斌锋), Ren W(任伟). Cause analysis on burr defect of electrolytic copper foil and countermeasures[J]. Electroplating & Finishing(电镀与涂饰), 2017, 36(20): 1104-1107. |
[60] |
Yin X Q, Peng, L J, Kayani S, Cheng L, Wang J W, Xiao W, Wang L G, Huang G J. Mechanical properties and microstructure of rolled and electrodeposited thin copper foil[J]. Rare Met., 2016, 35(12): 909-914.
doi: 10.1007/s12598-016-0806-4 URL |
[61] | He T S(何铁帅), Fan B F(樊斌锋). Recrystallization on mechanical property of electrolytic copper foil used in lithium battery[J]. Copper Eng.(铜业工程), 2020, 1: 52-55. |
[62] | Li D(李荻). Principles of electrochemistry (3rd Edition)[M]. Beijing: Beihang University Press(北京航空航天大学出版社), 2008: 295-296. |
[63] | Vetter K J. Electrochemische Kinetik[M]. Springer Verlag Berlin, 1961: 698. |
[65] | Du B C(渡边辙). Microstructure control theory of plated film and data base of plated film microstructure[M]. Beijing: Chemical Industry Press(化学工业出版社), 2007: 7-10. |
[66] | Zhou G D(周公度), Duan L Y(段连运). Fundamentals of structural chemistry (3rd Edition)[M]. Beijing: Peking University Press(北京大学出版社), 2002: 304-306. |
[1] | 高玲玉, 杨琳, 王晨辉, 单桂轩, 霍欣怡, 张梦飞, 李韡, 张金利. 碱性电解槽三维两相CFD模拟研究[J]. 电化学(中英文), 2023, 29(9): 2207081-. |
[2] | 杨武, 郑雪凡, 武玉琪, 汤士军, 龚正良. LiF-Sn复合修饰层改性石榴石/锂金属界面[J]. 电化学(中英文), 2023, 29(11): 2204071-. |
[3] | 屈小峰, 唐宇婷, 何鑫程, 周佳晟, 唐子恒, 冯文华, 刘军. PEG水系电解液用于高性能锌碘双离子电池[J]. 电化学(中英文), 2023, 29(11): 211026-. |
[4] | 范佳, 韩娜, 李彦光. 基于流动池的电化学二氧化碳还原研究进展[J]. 电化学(中英文), 2020, 26(4): 510-520. |
[5] | 谭凯峰,陈维荣,韩 明,张雪霞. 空冷型PEMFC电堆的单电池特性研究[J]. 电化学(中英文), 2018, 24(6): 766-771. |
[6] | 饶妍,李赏,周芬,田甜,钟青,宛朝辉,谭金婷,潘牧. 低铂膜电极结构优化途径[J]. 电化学(中英文), 2018, 24(6): 677-686. |
[7] | 杨翩翩,黄丽珍,李影影,施梅勤,马淳安. 掺氮碳化钨的制备及其电催化性能的研究[J]. 电化学(中英文), 2018, 24(1): 63-71. |
[8] | 范庆国,叶志国*,孟惠民,卢春民. 刻蚀剂对IrO2-MnO2阳极纳米涂层表面形貌及电化学行为的影响[J]. 电化学(中英文), 2015, 21(1): 91-96. |
[9] | 李照华, 褚有群, 马淳安. Ce3+/Ce4+电对在硫酸和甲磺酸介质中电化学性能的差异[J]. 电化学(中英文), 2013, 19(2): 141-145. |
[10] | 冯绍彬,商士波,冯丽婷. 焦磷酸盐电镀铜初始过程研究[J]. 电化学(中英文), 2005, 11(2): 228-231. |
[11] | 李天成,朱慎林. 电催化氧化技术处理苯酚废水研究[J]. 电化学(中英文), 2005, 11(1): 101-104. |
[12] | 黄春波, 吕战鹏, 杨武. Fe-Cr-Ni合金碱性SCC的电化学预测方法[J]. 电化学(中英文), 2003, 9(3): 292-298. |
[13] | 印仁和, 曹为民, 方正华. SCN-对Zn-Co合金共沉积Zn转移电流的影响[J]. 电化学(中英文), 2003, 9(2): 240-244. |
[14] | 于辉, 孙明先, 马焱, 王晓滨. 活性氯在316L不锈钢电极表面的阴极行为研究[J]. 电化学(中英文), 2003, 9(1): 66-70. |
[15] | 印仁和,方正华,曹为民. Cl-对Zn-Ni合金共沉积Zn转移电流密度的影响[J]. 电化学(中英文), 2002, 8(2): 228-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||