电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 694-715. doi: 10.13208/j.electrochem.200654
收稿日期:
2020-08-03
修回日期:
2020-09-08
出版日期:
2020-10-28
发布日期:
2020-10-28
通讯作者:
陈剑
E-mail:chenjian@dicp.ac.cn
基金资助:
SHAO Qin-jun1,2, CHEN Jian1,*()
Received:
2020-08-03
Revised:
2020-09-08
Published:
2020-10-28
Online:
2020-10-28
Contact:
CHEN Jian
E-mail:chenjian@dicp.ac.cn
摘要:
单质硫作为电池的正极材料,其电化学过程历经多个步骤,完全放电生成最终产物是一个2电子反应. 低阶多硫化锂的生成需克服一定的能垒,且由Li2S2得到一个电子还原生成Li2S的反应是速控步骤. 硫正极的反应动力学是决定锂硫电池电化学性能,如比能量、比功率、低温性能等的关键因素. 提高速控步骤的反应动力学还能加速可溶性多硫化锂Li2S4向不溶性Li2S2和Li2S的转化,有利于减缓或消除多硫化锂的“穿梭效应”. 近年,已有大量的过渡金属氧化物、硫化物、碳化物、氮化物、磷化物,单原子催化剂和氧化还原电子中继体等被应用于催化硫正极反应,提高了电极的电化学性能和循环稳定性. 但是,目前详细的催化反应机制尚不完全清晰. 本文重点综述了这些化合物在硫正极反应中的作用机制,总结了近年来的研究进展,并对硫正极催化转换反应的研究和发展进行了展望.
中图分类号:
邵钦君, 陈剑. 锂硫电池硫正极催化转换反应的研究进展[J]. 电化学(中英文), 2020, 26(5): 694-715.
SHAO Qin-jun, CHEN Jian. Research Progress of Sulfur Cathode Catalytic Conversions for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2020, 26(5): 694-715.
[1] |
Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011,11(1):19-29.
doi: 10.1038/nmat3191 URL pmid: 22169914 |
[2] | Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials, 2015,5(16):1500408. |
[3] |
Zheng D, Wang G W, Liu D, et al. The progress of Li-S batteries-understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes[J]. Advanced Materials Technologies, 2018,3(9):1700233.
doi: 10.1002/admt.201700233 URL |
[4] | Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2016,2:76-106. |
[5] |
Zheng D, Liu D, Harris J B, et al. Investigation of the Li-S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge[J]. ACS Applied Materials & Interfaces, 2017,9(5):4326-4332.
doi: 10.1021/acsami.6b08904 URL pmid: 27612389 |
[6] | Wang D R, Shah D B, Maslyn J A, et al. Rate constants of electrochemical reactions in a lithium-sulfur cell determined by operando X-ray absorption spectroscopy[J]. Journal of The Electrochemical Society, 2018,165(14):3487-3495. |
[7] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
doi: 10.1038/nmat2460 URL pmid: 19448613 |
[8] |
Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2011,50(26):5904-5908.
doi: 10.1002/anie.201100637 URL pmid: 21591036 |
[9] |
Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011,11(7):2644-2647.
doi: 10.1021/nl200658a URL pmid: 21699259 |
[10] |
Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2012,51(15):3591-3595.
URL pmid: 22383067 |
[11] | Wang D W, Zeng Q C, Zhou G M, et al. Carbon-sulfur composites for Li-S batteries: status and prospects[J]. Journal of Materials Chemistry A, 2013,1(33):9382-9394. |
[12] | Li L, Zhou G M, Yin L C, et al. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries[J]. Carbon, 2016,108:120-126. |
[13] |
Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142.
doi: 10.1021/acs.nanolett.5b01919 URL pmid: 26148211 |
[14] |
Wei Seh Z, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013,4:1331.
URL pmid: 23299881 |
[15] |
Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015,54(13):3907-3911.
URL pmid: 25650042 |
[16] |
Song J X, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie-International Edition, 2015,54(14):4325-4329.
doi: 10.1002/anie.201411109 URL pmid: 25663183 |
[17] |
Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016,28(32):6926-6931.
doi: 10.1002/adma.201601382 URL pmid: 27229660 |
[18] | Park S K, Lee J K, Kang Y C. Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries[J]. Advanced Functional Materials, 28, 18:1705264. |
[19] |
Peng H J, Zhang Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry[J]. Angewandte Chemie-International Edition, 2015,54(38):11018-11020.
doi: 10.1002/anie.201505444 URL pmid: 26352019 |
[20] |
Al Salem H, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. Journal of The American Chemical Society, 2015,137(36):11542-11545.
doi: 10.1021/jacs.5b04472 URL pmid: 26331670 |
[21] | Li Y J, Fan J M, Zheng M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016,9(6):1998-2004. |
[22] |
Li Y J, Fang J M, Zhang J H, et al. A Honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S Batteries[J]. ACS Nano, 2017,11(11):11417-11424.
URL pmid: 29045778 |
[23] |
Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016,16(1):519-527.
doi: 10.1021/acs.nanolett.5b04166 URL pmid: 26713782 |
[24] | Wang H Q, Zhang W C, Xu J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707520. |
[25] | Zhang Z W, Peng H J, Zhao M, et al. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: progress and prospects[J]. Advanced Functional Materials, 2018,28(38):1707536. |
[26] | Deng C, Wang Z W, Wang S P, et al. Inhibition of polysulfide diffusion in lithium-sulfur batteries: mechanism and improvement strategies[J]. Journal of Materials Che-mistry A, 2019,7(20):12381-12413. |
[27] |
Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014,5:4759.
doi: 10.1038/ncomms5759 URL pmid: 25154399 |
[28] |
Tao X Y, Wang J G, Ying Z G, et al. Strong sulfur binding with conducting Magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014,14(9):5288-5294.
URL pmid: 25089648 |
[29] |
Li Z, Zhang J T, Lou X W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015,54(44):12886-12890.
URL pmid: 26349817 |
[30] |
Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7:11203.
doi: 10.1038/ncomms11203 URL pmid: 27046216 |
[31] | Liang X, Kwok C Y, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle[J]. Advanced Energy Materials, 2016,6(6):1501636. |
[32] |
Liang X, Nazar L F. In situ reactive assembly of scalable core-shell sulfur-mnO2 composite cathodes[J]. ACS Nano, 2016,10(4):4192-4198.
URL pmid: 26910648 |
[33] | Wang X L, Li G, Li J D, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy & Environmental Science, 2016,9(8):2533-2538. |
[34] | Wang S Z, Liao J X, Yang X F, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries[J]. Nano Energy, 2019,57:230-240. |
[35] |
Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015,6:5682.
doi: 10.1038/ncomms6682 URL pmid: 25562485 |
[36] | Shao Q J, Guo D C, Wang C, et al. Yolk-shell structure MnO2@Hollow carbon nanospheres as sulfur host with synergistic encapsulation of polysulfides for improved Li-S batteries[J]. Journal of Alloys and Compounds, 2020,842:155790. |
[37] | Liu Y T, Han D D, Wang L, et al. NiCO2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery[J]. Advanced Energy Materials, 2019,9(11):1803477. |
[38] | Tao Y Q, Wei Y J, Liu Y, et al. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery[J]. Energy & Environmen-tal Science, 2016,9(10):3230-3239. |
[39] | Zheng C, Niu S Z, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017,33:306-312. |
[40] |
Ma F, Liang J S, Wang T Y, et al. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes[J]. Nanoscale, 2018,10(12):5634-5641.
URL pmid: 29528070 |
[41] |
Wang C L, Li K, Zhang F F, et al. Insight of enhanced redox chemistry for porous MoO2 carbon-derived framework as polysulfide reservoir in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018,10(49):42286-42293.
URL pmid: 30461261 |
[42] | Liu H D, Chen Z L, Zhou L, et al. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(12):7074-7081. |
[43] |
Zhou G M, Tian H Z, Jina Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840-845.
doi: 10.1073/pnas.1615837114 URL pmid: 28096362 |
[44] | Shao Q J, Lu P F, Xu L, et al. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries[J]. Journal of Energy Chemistry, 2020,51:262-271. |
[45] | Lei T Y, Chen W, Huang J W, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Advanced Energy Materials, 2017,7(4):1601843. |
[46] | Thangavel N K, Gopalakrishnan D, Arava L M R. Understanding heterogeneous electrocatalysis of lithium polysulfide redox on Pt and WS2 surfaces[J]. The Journal of Physical Chemistry C, 2017,121(23):12718-12725. |
[47] | Li M, Zhou J B, Zhou J, et al. Ultrathin SnS2 nanosheets as robust polysulfides immobilizers for high performance lithium-sulfur batteries[J]. Materials Research Bulletin, 2017,96:509-515. |
[48] |
Xiao Z B, Yang Z, Zhang L J, et al. Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium-sulfur batteries[J]. ACS Nano, 2017,11(8):8488-8498.
doi: 10.1021/acsnano.7b04442 URL pmid: 28745863 |
[49] |
Zhang Q, Wang Y, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015,15(6):3780-3786.
URL pmid: 25961805 |
[50] |
Wang H T, Zhang Q F, Yao H B, et al. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials[J]. Nano Letters, 2014,14(12):7138-7144.
doi: 10.1021/nl503730c URL pmid: 25372985 |
[51] |
Babu G, Masurkar N, Al Salem H, et al. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis[J]. Journal of The American Chemical Society, 2017,139(1):171-178.
doi: 10.1021/jacs.6b08681 URL pmid: 28001059 |
[52] | Lin H B, Yang L Q, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2017,10(6):1476-1486. |
[53] |
Lin H B, Zhang S L, Zhang T R, et al. Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries[J]. Advanced Energy Materials, 2019,9(38):1902096.
doi: 10.1002/aenm.v9.38 URL |
[54] | Ren J, Zhou Y B, Xia L, et al. Rational design of a multidimensional N-doped porous carbon/MoS2/CNT nano-architecture hybrid for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018,6(28):13835-13847. |
[55] | Wei Y J, Kong Z K, Pan Y K, et al. Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018,6(14):5899-5909. |
[56] | Wu J Y, Li X W, Zeng H X, et al. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(13):7897-7906. |
[57] | Chen X, Peng H J, Zhang R, et al. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides?[J]. ACS Energy Letters, 2017,2(4):795-801. |
[58] |
Ai G, Hu Q Q, Zhang L, et al. Investigation of the nano-crystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries[J]. ACS applied materials & interfaces, 2019,11(37):33987-33999.
doi: 10.1021/acsami.9b11561 URL pmid: 31448888 |
[59] |
Li W L, Qian J, Zhao T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science, 2019,6(16):1802362.
doi: 10.1002/advs.201802362 URL pmid: 31453053 |
[60] | Ye C, Zhang L, Guo C X, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2017,27(33):1702524. |
[61] | Cai D, Wang L L, Li L, et al. Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance[J]. Journal of Materials Chemistry A, 2019,7(2):806-815. |
[62] | Xu J, Zhang W X, Fan H B, et al. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery[J]. Nano Energy, 2018,51:73-82. |
[63] | Boyjoo Y, Shi H D, Olsson E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020,10(20):2000651. |
[64] | Liu Y P, Ma S Y, Liu L F, et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries[J]. Advanced Functional Materials, 2020,30(32):2002462. |
[65] | Xiao Z B, Li Z L, Meng X P, et al. MXene-engineered lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(40):22730-22743. |
[66] | Liang X, Rangom Y, Kwok C Y, et al. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J]. Advanced Materials, 2017,29(3):1603040. |
[67] |
Xiao Z B, Li Z L, Li P Y, et al. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019,13(3):3608-3617.
doi: 10.1021/acsnano.9b00177 URL pmid: 30864777 |
[68] | Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy, 2020,70:104555. |
[69] |
Dong Y F, Zheng S H, Qin J Q, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries[J]. ACS Nano, 2018,12(3):2381-2388.
URL pmid: 29455522 |
[70] |
Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2016,55(42):12990-12995.
doi: 10.1002/anie.201605676 URL pmid: 27513988 |
[71] | Zhou T H, Zhao Y, Zhou G M, et al. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement[J]. Nano Energy, 2017,39:291-296. |
[72] | Shang C Q, Cao L J, Yang M Y, et al. Freestanding MO2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries[J]. Energy Storage Materials, 2018,18:375-381. |
[73] |
Zhou F, Li Z, Luo X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters, 2018,18(2):1035-1043.
doi: 10.1021/acs.nanolett.7b04505 URL pmid: 29300493 |
[74] |
Pang Q, Nazar L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano, 2016,10(4):4111-4118.
doi: 10.1021/acsnano.5b07347 URL pmid: 26841116 |
[75] | Wang M, Liang Q H, Han J W, et al. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries[J]. Nano Research, 2018,11(6):3480-3489. |
[76] | Sun Z H, Zhang J Q, Yin L C, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Com-munications, 2017,8:14627. |
[77] | Zhong Y, Chao D L, Deng S J, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1706391. |
[78] | He J R, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor[J]. Advanced Energy Materials, 2019,10(3):1903241. |
[79] | Jeong T G, Choi D S, Song H, et al. Heterogeneous catalysis for lithium-sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations[J]. ACS Energy Letters, 2017,2(2):327-333. |
[80] |
Wang Y, Zhang R, Pang Y C, et al. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries[J]. Energy Storage Materials, 2019,16:228-235.
doi: 10.1016/j.ensm.2018.05.019 URL |
[81] | Xiao K K, Wang J, Chen Z, et al. Improving Polysulfides Adsorption and Redox Kinetics by the CO4N nanoparticle/n-doped carbon composites for lithium-sulfur batteries[J]. Small, 2019,15(25):1901454. |
[82] |
Li R R, Peng H J, Wu Q P, et al. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2020,59(29):12129-12138.
doi: 10.1002/anie.202004048 URL pmid: 32298043 |
[83] |
Zhao M, Peng H J, Zhang Z W, et al. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angewandte Chemie-International Edition, 2019,58(12):3779-3783.
doi: 10.1002/anie.201812062 URL pmid: 30548388 |
[84] |
Ren W J, Xu L Q, Zhu L, et al. Cobalt-doped vanadium nitride yolk-shell nanospheres@carbon with physical and chemical synergistic effects for advanced Li-S Batteries[J]. ACS Applied Materials & Interfaces, 2018,10(14):11642-11651.
doi: 10.1021/acsami.7b18955 URL pmid: 29546980 |
[85] |
Shen Z H, Zhang Z L, Li M, et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries[J]. ACS Nano, 2020,14(6):6673-6682.
doi: 10.1021/acsnano.9b09371 URL pmid: 32463691 |
[86] | Zhou T H, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017,10(7):1694-1703. |
[87] | Ji L, Wang X, Jia Y F, et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry[J]. Advanced Functional Materials, 2020,30(28):1910533. |
[88] | Yao Y, Wang H Y, Yang H, et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries[J]. Advanced Materials, 2020,32(6):1905658. |
[89] |
Ye J C, Chen J J, Yuan R M, et al. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters[J]. Journal of The American Chemical Society, 2018,140(8):3134-3138.
doi: 10.1021/jacs.8b00411 URL pmid: 29425034 |
[90] | Yuan H, Zhang N, Tian L, et al. Incorporation of layered tin(IV) phosphate in graphene framework for high performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021,53:99-108. |
[91] | Yuan H D, Chen X L, Zhou G M, et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries[J]. ACS Energy Letters, 2017,2(7):1711-1719. |
[92] |
Zhou J B, Liu X J, Zhu L Q, et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry[J]. Joule, 2018,2(12):2681-2693.
doi: 10.1016/j.joule.2018.08.010 URL |
[93] |
Shen J D, Xu X J, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019,13(8):8986-8996.
doi: 10.1021/acsnano.9b02903 URL pmid: 31356051 |
[94] |
Shen Z H, Cao M Q, Zhang Z L, et al. Efficient Ni2CO4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery[J]. Advanced Functional Materials, 2019,30(3):1906661.
doi: 10.1002/adfm.v30.3 URL |
[95] |
Li B Q, Kong L, Zhao C X, et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries[J]. InfoMat, 2019,1(4):533-541.
doi: 10.1002/inf2.v1.4 URL |
[96] |
Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of The American Chemical Society, 2019,141(9):3977-3985.
doi: 10.1021/jacs.8b12973 URL pmid: 30764605 |
[97] |
Ye H L, Sun J G, Zhang S L, et al. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li-S batteries[J]. ACS Nano, 2019,13(12):14208-14216.
doi: 10.1021/acsnano.9b07121 URL pmid: 31790591 |
[98] |
Fan Y N, Ma F, Liang J S, et al. Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-car-bon for advanced lithium-sulfur batteries[J]. Nanoscale, 2020,12(2):584-590.
doi: 10.1039/c9nr09037a URL pmid: 31845694 |
[99] |
Wang C G, Song H W, Yu C C, et al. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2020,8(6):3421-3430.
doi: 10.1039/C9TA11680J URL |
[100] |
Zhang D, Wang S, Hu R M, et al. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries[J]. Advanced Functional Materials, 2020,30(30):2002471.
doi: 10.1002/adfm.v30.30 URL |
[101] |
Meini S, Elazari R, Rosenman A, et al. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. Journal of Physical Chemistry Letters, 2014,5(5):915-918.
doi: 10.1021/jz500222f URL pmid: 26274088 |
[102] | Tsao Y, Lee M, Miller E C, et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019,3(3):872-884. |
[103] |
Li G, Wang X L, Seo M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nature Communications, 2018,9(1):705.
doi: 10.1038/s41467-018-03116-z URL pmid: 29453414 |
[104] |
Gerber L C, Frischmann P D, Fan F Y, et al. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator[J]. Nano Letters, 2016,16(1):549-454.
doi: 10.1021/acs.nanolett.5b04189 URL pmid: 26691496 |
[105] |
Wu X, Liu N, Guan B, et al. Redox mediator: A new strategy in designing cathode for prompting redox process of Li-S batteries[J]. Advanced Science, 2019,6(21):1900958.
doi: 10.1002/advs.201900958 URL pmid: 31728278 |
[1] | 丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009-. |
[2] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[3] | 张修庆, 唐帅, 付永柱. 锂硫电池电解液功能性添加剂研究进展[J]. 电化学(中英文), 2023, 29(4): 2217005-. |
[4] | 李莎, 湛孝, 王顾莲, 王慧群, 熊伟明, 张力. 紫外光引发原位交联多功能粘结剂构筑稳固硫正极[J]. 电化学(中英文), 2023, 29(4): 2217004-. |
[5] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[6] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[7] | 王妍洁, 程宏宇, 侯冀岳, 杨文豪, 黄荣威, 倪志聪, 朱子翼, 王颖, 韦克毅, 张义永, 李雪. CoNi基双金属-有机骨架衍生碳复合材料多功能改性锂硫电池隔膜[J]. 电化学(中英文), 2023, 29(3): 2217002-. |
[8] | 贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008-. |
[9] | 姬璇, 汪佳裕, 王安邦, 王维坤, 姚明, 黄雅钦. 锂硫电池用高度环化硫化聚丙烯腈的制备[J]. 电化学(中英文), 2022, 28(12): 2219010-. |
[10] | 李西尧, 赵长欣, 李博权, 黄佳琦, 张强. 锂硫电池复合正极研究进展[J]. 电化学(中英文), 2022, 28(12): 2219013-. |
[11] | 汪佳裕, 仝学锋, 彭启繁, 关越鹏, 王维坤, 王安邦, 刘乃强, 黄雅钦. 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学(中英文), 2022, 28(11): 2219008-. |
[12] | 赵桂香, Wail Hafiz Zaki Ahmed, 朱福良. 氮硫共掺杂多孔碳材料的制备及其在锂硫电池中的应用[J]. 电化学(中英文), 2021, 27(6): 614-623. |
[13] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[14] | 范业鹏, 罗业强, 沈培康. MXene-碳黑/硫复合材料在锂硫电池一体式电极的研究[J]. 电化学(中英文), 2021, 27(4): 377-387. |
[15] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||