电化学(中英文) ›› 2020, Vol. 26 ›› Issue (4): 531-562. doi: 10.13208/j.electrochem.200524
徐能能1,2, 乔锦丽1,*
收稿日期:
2020-05-24
修回日期:
2020-05-28
出版日期:
2020-08-28
发布日期:
2020-06-04
通讯作者:
乔锦丽
基金资助:
XU Neng-neng1,2, QIAO Jin-li1,*
Received:
2020-05-24
Revised:
2020-05-28
Published:
2020-08-28
Online:
2020-06-04
Contact:
QIAO Jin-li
摘要:
锌-空气电池因其拥有理想的能量密度和功率密度,并有望在能源转化与储存领域的广泛应用,引起国内外研究者的高度关注. 其中,空气电极作为氧催化反应的核心区域,更是整个锌-空气电池研究的重点. 近年来,非贵金属双功能催化剂及其电极以其高活性、低成本以及种类丰富等特点取得了较多的研究成果. 本文综述了非贵金属氧化物催化剂、碳基催化剂、碳载过渡金属化合物复合材料以及自支撑电极在锌-空气电池中的反应机制和研究进展,提出了高效双功能催化剂的构建策略,并对双功能催化剂/电极的发展趋势进行了展望.
中图分类号:
徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学(中英文), 2020, 26(4): 531-562.
XU Neng-neng, QIAO Jin-li. Recent Progress in Bifunctional Catalysts for Zinc-Air Batteries[J]. Journal of Electrochemistry, 2020, 26(4): 531-562.
表1
自支撑电极材料与粉末催化剂的对比
Difference | Self-supported electrode | Powdery catalysts |
---|---|---|
Preparation | Active materials directly grown on substrates, or free standing film self-synthesized | Active materials physically loaded onto the electrode |
Binder | Without binders | Polymer binder and additional conductive active material |
Configuration | 3D nano-structure | Uncontrolled microstructure with some dead volumes |
Electroactive surface area | Large | Limited |
Mass transfer | Rapid penetration and diffusion | Restricted |
Conductivity | Good | Poor |
Stability | Enhanced long-term stability | Undesired, easy peeling |
Prospect | Great potential | Time-consuming, complex and polluting |
[1] |
Cheng F Y, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012,41(6):2172-2192.
URL pmid: 22254234 |
[2] |
Li Y G, Dai H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014,43(15):5257-5275.
URL pmid: 24926965 |
[3] |
Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery[J]. Nature, 2015,520(7547):325-328.
doi: 10.1038/nature14340 URL pmid: 25849777 |
[4] | Park M, Ryu J, Wang W, et al. Material design and engineering of next-generation flow-battery technologies[J]. Nature Reviews Materials, 2017,2(1):16080. |
[5] | Li S S (李升宪), Zhou G M (周贵茂), Ai X P (艾新平), et al. A study on the cylindrical zinc-air battery[J]. Journal of Electrochemistry (电化学), 2000,6(3):341-344. |
[6] |
Fu J, Cano Z P, Park M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials, 2017,29(7):1604685.
doi: 10.1002/adma.201604685 URL |
[7] |
Bidault F, Brett D J L, Middleton P H, et al. Review of gas diffusion cathodes for alkaline fuel cells[J]. Journal of Power Sources, 2009,187(1):39-48.
doi: 10.1016/j.jpowsour.2008.10.106 URL |
[8] |
Perry M L, Fuller T F. A historical perspective of fuel cell technology in the 20th century[J]. Journal of The Electrochemical Society, 2002,149(7):S59-S67.
doi: 10.1149/1.1488651 URL |
[9] |
Tang Q W, Wang L M, Wu M J, et al. Achieving high-powered Zn/air fuel cell through N and S co-doped hierarchically porous carbons with tunable active-sites as oxygen electrocatalysts[J]. Journal of Power Sources, 2017,365:348-353.
doi: 10.1016/j.jpowsour.2017.08.102 URL |
[10] |
Mohamad A A. Zn/gelled 6M KOH/O2 zinc-air battery[J]. Journal of Power Sources, 2006,159(1):752-757.
doi: 10.1016/j.jpowsour.2005.10.110 URL |
[11] |
Neburchilov V, Wang H, Martin J J, et al. A review on air cathodes for zinc-air fuel cells[J]. Journal of Power Sources, 2010,195(5):1271-1291.
doi: 10.1016/j.jpowsour.2009.08.100 URL |
[12] |
Xu M, Ivey D G, Xie Z, et al. Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement[J]. Journal of Power Sources, 2015,283:358-371.
doi: 10.1016/j.jpowsour.2015.02.114 URL |
[13] |
Cao R, Lee J S, Liu M, et al. Recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012,2(7):816-829.
doi: 10.1002/aenm.201200013 URL |
[14] | Trunov A. Analysis of oxygen reduction reaction pathways on Co3O4, NiCO2O4, Co3O4-Li2O, NiO, NiO-Li2O, Pt, and Au electrodes in alkaline medium[J]. Electrochi-mica Acta, 2013,105:506-513. |
[15] |
Kleiman-Shwarsctein A, Hu Y S, Stucky G D, et al. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes[J]. Electrochemistry Communications, 2009,11(6):1150-1153.
doi: 10.1016/j.elecom.2009.03.034 URL |
[16] |
Peng L S, Shah S S A, Wei Z D, Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2018,39(10):1575-1593.
doi: 10.1016/S1872-2067(18)63130-4 URL |
[17] | Zhao F M (赵峰鸣), Ma C A (马淳安). Electrocatalytic performances of carbon nanotube air electrode for oxygen reduction[J]. Journal of Electrochemistry (电化学), 2004,10(4):384-390. |
[18] |
Wang K L, Pei P C, Wang Y C, et al. Advanced rechargeable zinc-air battery with parameter optimization[J]. Applied Energy, 2018,225:848-856.
doi: 10.1016/j.apenergy.2018.05.071 URL |
[19] |
Tan P, Chen B, Xu H R, et al. Flexible Zn- and Li-air batteries: recent advances, challenges, and future perspectives[J]. Energy Environmental Science, 2017,10(10):2056-2080.
doi: 10.1039/C7EE01913K URL |
[20] |
Goh F W T, Liu Z, Ge X, et al. Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc-air battery[J]. Electrochimica Acta, 2013,114:598-604.
doi: 10.1016/j.electacta.2013.10.116 URL |
[21] |
Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catalysis, 2012,2(8):1765-1772.
doi: 10.1021/cs3003098 URL |
[22] |
Sung M, Kim J. Oxygen evolution reaction on Pt sphere and Ir-modified Pt sphere electrodes with porous structures[J]. International Journal of Hydrogen Energy, 2018,43(4):2130-2138.
doi: 10.1016/j.ijhydene.2017.11.167 URL |
[23] |
Jia Q, Caldwell K, Ziegelbauer J M, et al. The role of OOH binding site and Pt surface structure on ORR activities[J]. Journal of The Electrochemical Society, 2014,161(14):F1323-F1329.
doi: 10.1149/2.1071412jes URL pmid: 26190857 |
[24] |
Zinola C F, Arvia A J, Estiu G L, et al. A quantum chemical approach to the influence of platinum surface structure on the oxygen electroreduction reaction[J]. The Journal of Physical Chemistry, 1994,98(31):7566-7576.
doi: 10.1021/j100082a030 URL |
[25] |
Spendelow J S, Wieckowski A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Physical Chemistry Chemical Physics, 2007,9(21):2654-2675.
doi: 10.1039/b703315j URL pmid: 17627310 |
[26] |
Su H Y, Gorlin Y, Man I C, et al. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis[J]. Physical Chemistry Chemical Physics, 2012,14(40):14010-14022.
doi: 10.1039/c2cp40841d URL pmid: 22990481 |
[27] | Lee D U, Xu P, Cano Z P, et al. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. Journal of Ma-terials Chemistry A, 2016,4(19):7107-7134. |
[28] |
Liang Y Y, Li Y G, Wang H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Material, 2011,10(10):780-786.
doi: 10.1038/nmat3087 URL |
[29] |
Suntivich J, Gasteiger H A, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011,3(7):546-550.
URL pmid: 21697876 |
[30] |
Seo M H, Park H W, Lee D U, et al. Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies[J]. ACS Catalysis, 2015,5(7):4337-4344.
doi: 10.1021/acscatal.5b00114 URL |
[31] |
Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review[J]. ACS Catalysis, 2016,6(12):8069-8097.
doi: 10.1021/acscatal.6b02479 URL |
[32] |
Chakthranont P, Kibsgaard J, Gallo A, et al. Effects of gold substrates on the intrinsic and extrinsic activity of high-loading nickel-based oxyhydroxide oxygen evolution catalysts[J]. ACS Catalysis, 2017,7(8):5399-5409.
doi: 10.1021/acscatal.7b01070 URL |
[33] | Fabbri E, Habereder A, Waltar K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2014,4(11):3800-3821. |
[34] |
Jörissen L. Bifunctional oxygen/air electrodes[J]. Journal of Power Sources, 2006,155(1):23-32.
doi: 10.1016/j.jpowsour.2005.07.038 URL |
[35] | Kuang M, Wang Q, Ge H, et al. CuCoOx/FeOOH core-shell nanowires as an efficient bifunctional oxygen evolution and reduction catalyst[J]. ACS Energy Letters, 2017,2(10):2498-2505. |
[36] |
Yu L, Yang J F, Guan B Y, et al. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution[J]. Angewandte Chemie International Edition, 2018,57(1):172-176.
doi: 10.1002/anie.201710877 URL pmid: 29178355 |
[37] |
Ge X, Liu Y, Goh F W, et al. Dual-phase spinel MnCO2O4 and spinel MnCO2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution[J]. ACS Applied Materials Interfaces, 2014,6(15):12684-12691.
doi: 10.1021/am502675c URL pmid: 25058393 |
[38] |
He X B, Yin F X, Li Y H, et al. NiMnO3/NiMn2O4 oxides synthesized via the aid of pollen: ilmenite/spinel hybrid nanoparticles for highly efficient bifunctional oxygen electrocatalysis[J]. ACS Applied Materials Interfaces, 2016,8(40):26740-26757.
doi: 10.1021/acsami.6b08101 URL pmid: 27644111 |
[39] |
Luo Z S, Marti-Sanchez S, Nafria R, et al. Fe3O4@NiFexOy nanoparticles with enhanced electrocatalytic properties for oxygen evolution in carbonate electrolyte[J]. ACS Applied Materials Interfaces, 2016,8(43):29461-29469.
doi: 10.1021/acsami.6b09888 URL pmid: 27730808 |
[40] |
Gebremariam T T, Chen F, Wang Q, et al. Bimetallic Mn-Co oxide nanoparticles anchored on carbon nanofibers wrapped in nitrogen-doped carbon for application in Zn-Air batteries and supercapacitors[J]. ACS Applied Energy Materials, 2018,1(4):1612-1625.
doi: 10.1021/acsaem.8b00067 URL |
[41] | Li L Q, Yang J, Yang H B, et al. Anchoring Mn3O4 nano-particles on oxygen functionalized carbon nanotubes as bifunctional catalyst for rechargeable zinc-air battery[J]. ACS Applied Energy Materials, 2018,1(3):963-969. |
[42] | Gao G, Wu H B, Dong B, et al. Growth of ultrathin ZnCO2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties[J]. Advanced Science, 2015,2(1/2):1400014. |
[43] | Wang Z J, Zhang F, Jin C, et al. La2O3-NCNTs hybrids in-situ derived from LaNi0.9Fe0.1O3-C composites as novel robust bifunctional oxygen electrocatalysts[J]. Carbon, 2017,115:261-270. |
[44] |
Moni P, Hyun S, Vignesh A, et al. Chrysanthemum flower-like NiCO2O4-nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithium-oxygen and zinc-air batteries[J]. Chemical Communications, 2017,53(55):7836-7839.
doi: 10.1039/c7cc03826g URL pmid: 28653704 |
[45] | Li X, Zhu A L, Qu W, et al. Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries[J]. Electrochimica Acta, 2010,55(20):5891-5898. |
[46] | Ma C Y, Xu N N, Qiao J L, et al. Facile synjournal of NiCO2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn-air batteries[J]. International Journal of Hydrogen Energy, 2016,41(21):9211-9218. |
[47] |
Xiao J W, Wan L, Wang X, et al. Mesoporous Mn3O4-CoO core-shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation[J]. Journal of Materials Chemistry A, 2014,2(11):3794-3800.
doi: 10.1039/c3ta14453d URL |
[48] |
He Y, Zhang J F, He G W, et al. Ultrathin Co3O4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries[J]. Nanoscale, 2017,9(25):8623-8630.
URL pmid: 28608902 |
[49] | Davari E, Ivey D G. Bifunctional electrocatalysts for Zn-air batteries[J]. Sustainable Energy & Fuels, 2018,2(1):39-67. |
[50] | Jiang H, Dai Y H, Hu Y J, et al. Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2013,2(1):70-74. |
[51] |
Débart A, Paterson A J, Bao J, et al. α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries[J]. Angewandte Chemie, 2008,120(24):4597-4600.
doi: 10.1002/(ISSN)1521-3757 URL |
[52] | Wu M S. Electrochemical capacitance from manganese oxide nanowire structure synthesized by cyclic voltammetric electrodeposition[J]. Applied Physics Letters, 2005,87(15):153102. |
[53] | Chen Z, Yu A P, Ahmed R, et al. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery[J]. Electrochimica Acta, 2012,69:295-300. |
[54] | Huang Y J, Lin Y L, Li W S. Controllable syntheses of α- and δ-MnO2 as cathode catalysts for zinc-air battery[J]. Electrochimica Acta, 2013,99:161-165. |
[55] | Jiang M, He H, Huang C, et al. α-MnO2 nanowires/graphene composites with high electrocatalytic activity for Mg-air fuel cell[J]. Electrochimica Acta, 2016,219:492-501. |
[56] | Zeng Z, Zhang W D, Liu Y Y, et al. Uniformly electrodeposited α-MnO2 film on super-aligned electrospun carbon nanofibers for a bifunctional catalyst design in oxygen reduction reaction[J]. Electrochimica Acta, 2017,256:232-240. |
[57] | Choi H A, Jang H, Hwang H, et al. Synjournal and characterization of different MnO2 morphologies for lithium-air batteries[J]. Electronic Materials Letters, 2014,10(5):957-962. |
[58] | Cao Y, Wei Z K, He J, et al. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance[J]. Energy Environmental Science, 2012,5(12):9765-9768. |
[59] |
Saputra E, Muhammad S, Sun H, et al. Different crystallographic one-dimensional MnO2 nanomaterials and their superior performance in catalytic phenol degradation[J]. Environmental Science and Technology, 2013,47(11):5882-5887.
doi: 10.1021/es400878c URL pmid: 23651050 |
[60] | Li G, Mezaal M A, Zhang R, et al. Electrochemical performance of MnO2-based air cathodes for zinc-air batteries[J]. Fuel Cells, 2016,16(3):395-400. |
[61] | Selvakumar K, Senthil Kumar S M, Thangamuthu R, et al. Development of shape-engineered α-MnO2 materials as bi-functional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium[J]. International Journal of Hydrogen Energy, 2014,39(36):21024-21036. |
[62] | Cao Y L, Yang H X, Ai X P, et al. The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution[J]. Journal of Electroanalytical Chemistry, 2003,557:127-134. |
[63] | Devaraj S, Munichandraiah N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. Journal of Physical Chemistry C, 2008,112(11):4406-4417. |
[64] |
Meng Y T, Song W Q, Huang H, et al. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. Journal of the American Chemical Society, 2014,136(32):11452-11464.
doi: 10.1021/ja505186m URL pmid: 25058174 |
[65] | Chen K, Wang M, Li G L, et al. Spherical α-MnO2 supported on N-KB as efficient electrocatalyst for oxygen reduction in Al-air battery[J]. Materials, 2018,11(4):601. |
[66] | Xiao W, Xia H, Fuh J Y H, et al. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications[J]. Physica Scripta, 2010,T139:014008. |
[67] | Khalid S, Cao C, Naveed M, et al. 3D hierarchical MnO2 microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries[J]. Sustainable Energy & Fuels, 2017,1(8):1795-1804. |
[68] |
Gorlin Y, Jaramillo T F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation[J]. Journal of the American Chemical Society, 2010,132(39):13612-13614.
doi: 10.1021/ja104587v URL pmid: 20839797 |
[69] | Mao L Q, Zhang D, Sotomura T, et al. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts[J]. Electrochimica Acta, 2003,48(8):1015-1021. |
[70] | Roche I, Chainet E, Chatenet M, et al. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: Physical characterizations and ORR mechanism[J]. Journal of Physical Chemistry C, 2007,111(3):1434-1443. |
[71] |
Jiao F, Frei H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts[J]. Angewandte Chemie International Edition, 2009,48(10):1841-1844.
doi: 10.1002/anie.200805534 URL pmid: 19173364 |
[72] |
Jiao F, Frei H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts[J]. Chemical Communications, 2010,46(17):2920-2922.
doi: 10.1039/b921820c URL pmid: 20386823 |
[73] |
Kuo C H, Mosa I M, Thanneeru S, et al. Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions[J]. Chemical Communications, 2015,51(27):5951-5954.
doi: 10.1039/c5cc01152c URL pmid: 25736247 |
[74] |
Xu N N, Nie Q, Luo L Y Q, et al. Controllable hortensia-like MnO2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries[J]. ACS Applied Materials Interfaces, 2018,11(1):578-587.
doi: 10.1021/acsami.8b15047 URL pmid: 30525371 |
[75] |
Xiao J W, Kuang Q, Yang S H, et al. Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction[J]. Scientific Reports, 2013,3:2300.
doi: 10.1038/srep02300 URL pmid: 23892418 |
[76] |
Yeo B S, Bell A T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2011,133(14):5587-5593.
doi: 10.1021/ja200559j URL pmid: 21413705 |
[77] |
Mcalpin J G, Surendranath Y, Dincǎ M, et al. EPR evidence for Co(IV) species produced during water oxidation at neutral pH[J]. Journal of the American Chemical Society, 2010,132(20):6882-6883.
doi: 10.1021/ja1013344 URL pmid: 20433197 |
[78] |
Fayette M, Nelson A, Robinson R D. Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions[J]. Journal of Materials Chemistry A, 2015,3(8):4274-4283.
doi: 10.1039/C4TA04189E URL |
[79] |
Menezes P W, Indra A, Sahraie N R, et al. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions[J]. ChemSusChem, 2015,8(1):164-171.
doi: 10.1002/cssc.201402699 URL pmid: 25394186 |
[80] |
Sa Y J, Kwon K, Cheon J Y, et al. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts[J]. Journal of Materials Chemistry A, 2013,1(34):9992-10001.
doi: 10.1039/c3ta11917c URL |
[81] |
Lee D U, Scott J, Park H W, et al. Morphologically controlled Co3O4 nanodisks as practical bi-functional catalyst for rechargeable zinc-air battery applications[J]. Electrochemistry Communications, 2014,43:109-112.
doi: 10.1016/j.elecom.2014.03.020 URL |
[82] |
RiOs E, Nguyen-Cong H, Marco J F, et al. Indirect oxidation of ethylene glycol by peroxide ions at Ni0.3CO2.7O4 spinel oxide thin film electrodes[J]. Electrochimica Acta, 2000,45(27):4431-4440.
doi: 10.1016/S0013-4686(00)00498-9 URL |
[83] |
Tan Y, Wu C C, Lin H, et al. Insight the effect of surface Co cations on the electrocatalytic oxygen evolution properties of cobaltite spinels[J]. Electrochimica Acta, 2014,121:183-187.
doi: 10.1016/j.electacta.2013.12.128 URL |
[84] |
Peng S J, Hu Y X, Li L L, et al. Controlled synjournal of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li-O2 batteries[J]. Nano Energy, 2015,13:718-726.
doi: 10.1016/j.nanoen.2015.03.021 URL |
[85] |
Li X, Pletcher D, Russell A E, et al. A novel bifunctional oxygen GDE for alkaline secondary batteries[J]. Electrochemistry Communications, 2013,34:228-230.
doi: 10.1016/j.elecom.2013.06.020 URL |
[86] |
Zhao T T, Gadipelli S, He G J, et al. Tunable bifunctional activity of MnxCo3-xO4 nanocrystals decorated on carbon nanotubes for oxygen electrocatalysis[J]. ChemSusChem, 2018,11(8):1295-1304.
doi: 10.1002/cssc.201800049 URL pmid: 29443459 |
[87] |
Pletcher D, Li X, Price S W T, et al. Comparison of the spinels Co3O4 and NiCO2O4 as bifunctional oxygen catalysts in alkaline media[J]. Electrochimica Acta, 2016,188:286-293.
doi: 10.1016/j.electacta.2015.10.020 URL |
[88] |
Liu Z Q, Xu Q Z, Wang J Y, et al. Facile hydrothermal synjournal of urchin-like NiCO2O4 spheres as efficient electrocatalysts for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2013,38(16):6657-6662.
doi: 10.1016/j.ijhydene.2013.03.092 URL |
[89] |
Wang H, Song X H, Wang H Y, et al. Synjournal of hollow porous ZnCO2O4 microspheres as high-performance oxygen reduction reaction electrocatalyst[J]. International Journal of Hydrogen Energy, 2016,41(30):13024-13031.
doi: 10.1016/j.ijhydene.2016.05.046 URL |
[90] |
Ji R L, Cao C B, Chen Z, et al. Solvothermal synjournal of CoxFe3-xO4 spheres and their microwave absorption properties[J]. Journal of Materials Chemistry C, 2014,2(29):5944-5953.
doi: 10.1039/c4tc00167b URL |
[91] | Du J, Pan Y D, Zhang T R, et al. Facile solvothermal synjournal of CaMn2O4 nanorods for electrochemical oxygen reduction[J]. Journal of Materials Chemistry A, 2012,22(31):15812-15818. |
[92] |
Prabu M, Ketpang K, Shanmugam S. Hierarchical nanostructured NiCO2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries[J]. Nanoscale, 2014,6(6):3173-3181.
doi: 10.1039/c3nr05835b URL |
[93] |
Wang D D, Chen X, Evans D G, et al. Well-dispersed Co3O4/CO2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. Nanoscale, 2013,5(12):5312-5315.
doi: 10.1039/c3nr00444a URL |
[94] |
Jin C, Lu F L, Cao X C, et al. Facile synjournal and excellent electrochemical properties of NiCO2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction[J]. Journal of Materials Chemistry A, 2013,1(39):12170-12177.
doi: 10.1039/c3ta12118f URL |
[95] | Ma S C, Sun L Q, Cong L, et al. Multiporous MnCO2O4 microspheres as an efficient bifunctional catalyst for nonaqueous Li-O2 batteries[J]. The Journal of Physical Che-mistry C, 2013,117(49):25890-25897. |
[96] | Lu F L, Cao X C, Wang Y R, et al. A hierarchical NiCO2O4 spinel nanowire array as an electrocatalyst for rechargeable Li-air batteries[J]. RSC Advances, 2014,4(76):40373-40376. |
[97] |
Cheng F Y, Shen J A, Peng B, et al. Rapid room-temperature synjournal of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nature Chemistry, 2011,3(1):79-84.
URL pmid: 21160522 |
[98] | Wu X, Scott K. A non-precious metal bifunctional oxygen electrode for alkaline anion exchange membrane cells[J]. Journal of Power Sources, 2012,206:14-19. |
[99] | De Koninck M, Marsan B. MnxCu1-xCO2O4 used as bifunctional electrocatalyst in alkaline medium[J]. Electrochimica Acta, 2008,53(23):7012-7021. |
[100] | Ponce J, Rehspringer J L, Poillerat G, et al. Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4 Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media[J]. Electrochimica Acta, 2001,46(22):3373-3380. |
[101] |
Chen D J, Chen C, Baiyee Z M, et al. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chemical Reviews, 2015,115(18):9869-9921.
doi: 10.1021/acs.chemrev.5b00073 URL pmid: 26367275 |
[102] | Hardin W G, Mefford J T, Slanac D A, et al. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions[J]. Chemistry of Materials, 2014,26(11):3368-3376. |
[103] |
Suntivich J, May K J, Gasteiger H A, et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011,334(6061):1383-1385.
doi: 10.1126/science.1212858 URL pmid: 22033519 |
[104] |
Jung K N, Jung J H, Im W B, et al. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries[J]. ACS Applied Materials & Interfaces, 2013,5(20):9902-9907.
doi: 10.1021/am403244k URL pmid: 24053465 |
[105] | Suntivich J, Perry E E, Gasteiger H A, et al. The influence of the cation on the oxygen reduction and evolution activities of oxide surfaces in alkaline electrolyte[J]. Electrocatalysis, 2013,4(1):49-55. |
[106] | Lopez K, Park G, Sun H J, et al. Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1-xO3(x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution[J]. Journal of Applied Electrochemistry, 2015,45(4):313-323. |
[107] | Soares C O, Carvalho M D, Melo Jorge M E, et al. High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media[J]. Journal of Applied Electrochemistry, 2012,42(5):325-332. |
[108] | Hardin W G, Slanac D A, Wang X, et al. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes[J]. The Journal of Phy-sical Chemistry Letters, 2013,4(8):1254-1259. |
[109] |
Prabu M, Ramakrishnan P, Ganesan P, et al. LaTi0.65Fe0.35O3-δ nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries[J]. Nano Energy, 2015, 15:92-103.
doi: 10.1016/j.nanoen.2015.04.005 URL |
[110] |
Zhou W, Sunarso J, Motuzas J, et al. Deactivation and regeneration of oxygen reduction reactivity on double perovskite Ba2Bi0.1Sc0.2Co1.7O6-x cathode for intermediate-temperature solid oxide fuel cells[J]. Chemistry of Materials, 2011,23(6):1618-1624.
doi: 10.1021/cm103534x URL |
[111] | Zhao Y L, Xu L, Mai L Q, et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries[J]. Proceedings of the National Academy of Sciences, 2012,109(48):19569-19574. |
[112] |
Xu J J, Xu D, Wang Z L, et al. Synjournal of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandte Chemie International Edition, 2013,52(14):3887-3890.
doi: 10.1002/anie.201210057 URL pmid: 23447093 |
[113] |
Lin N, Liu X Y. Correction: Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles[J]. Chemical Society Reviews, 2015,44(21):7917-7917.
URL pmid: 26288339 |
[114] | Haas O, Holzer F, Müller S, et al. X-ray absorption and diffraction studies of La0.6Ca0.4CoO3 perovskite, a catalyst for bifunctional oxygen electrodes[J]. Electrochimica Acta, 2002,47(19):3211-3217. |
[115] | Wu N L, Liu W R, Su S J. Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3-x in bifunctional air electrode[J]. Electrochimica Acta, 2003,48(11):1567-1571. |
[116] |
Malkhandi S, Yang B, Manohar A K, et al. Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes[J]. The Journal of Physical Chemistry Letters, 2012,3(8):967-972.
doi: 10.1021/jz300181a URL pmid: 26286557 |
[117] |
Takeguchi T, Yamanaka T, Takahashi H, et al. Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries[J]. Journal of the American Chemical Society, 2013,135(30):11125-11130.
doi: 10.1021/ja403476v URL pmid: 23802735 |
[118] | Montenegro M J, Döbeli M, Lippert T, et al. Microstructures and film properties of La0.7Ca0.3CoO3 produced by pulsed reactive crossed-beam laser ablation[J]. Thin Solid Films, 2004,453(S1):182-186. |
[119] | Jin C, Cao X C, Lu F L, et al. Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media[J]. International Journal of Hydrogen Energy, 2013,38(25):10389-10393. |
[120] | Jin C, Yang Z B, Cao X C, et al. A novel bifunctional catalyst of Ba0.9Co0.5Fe0.4Nb0.1O3-δ perovskite for lithium-air battery[J]. International Journal of Hydrogen Energy, 2014,39(6):2526-2530. |
[121] |
Jung J I, Jeong H Y, Kim M G, et al. Fabrication of Ba0.5Sr0.5Co0.8Fe0.2O3-δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer[J]. Advanced Materials, 2015,27(2):266-271.
doi: 10.1002/adma.201403897 URL pmid: 25413252 |
[122] |
Jung J I, Jeong H Y, Lee J S, et al. A bifunctional perovskite catalyst for oxygen reduction and evolution[J]. Angewandte Chemie International Edition, 2014,53(18):4582-4586.
doi: 10.1002/anie.201311223 URL pmid: 24757039 |
[123] |
Risch M, Stoerzinger K A, Maruyama S, et al. La0.8Sr0.2MnO3-δ decorated with Ba0.5Sr0.5Co0.8Fe0.2O3-δ: A bifunctional surface for oxygen electrocatalysis with enhanced stability and activity[J]. Journal of the American Chemical Society, 2014,136(14):5229-5232.
doi: 10.1021/ja5009954 URL pmid: 24649849 |
[124] | Chen C F, King G, Dickerson R, et al. Oxygen-deficient BaTiO3-x perovskite oxides as an efficient bifunctional oxygen Electrocatalyst[J]. Nano Energy, 2015,13:423-432. |
[125] | Xu N N, Qiao J L, Zhang X, et al. Morphology controlled La2O3/Co3O4/MnO2-CNTs hybrid nanocomposites with durable bi-functional air electrode in high-performance zinc-air energy storage[J]. Applied Energy, 2016,175:495-504. |
[126] | Xu N N, Nie Q, Wei Y N, et al. Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for long-term zinc-air fuel cells and rechargeable batteries[J]. Sustainable Energy & Fuels, 2018,2(1):91-95. |
[127] | Li X M, Dong F, Xu N N, et al. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries[J]. ACS Applied Materials Interfaces, 2018,10(18):15591-15601. |
[128] | Zhao C J, Liu G Q, Sun N, et al. Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization[J]. Chemical Engineering Journal, 2018,334:1270-1280. |
[129] | Ma Z, Wang K X, Qiu Y F, et al. Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery[J]. Energy, 2018,143:43-55. |
[130] | Belytschko T, Xiao S C, Schatz G, et al. Atomistic simulations of nanotubes fracture[J]. Physical Review B, 2002,65:235430. |
[131] | Kim D Y, Kim M, Wook Kim D, et al. Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries[J]. Carbon, 2015,93:625-635. |
[132] | Li M T, Zhang L P, Xu Q, et al. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations[J]. Journal of Carbon, 2014,314:66-72. |
[133] | Li R, Wei Z D, Gou X L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catalysis, 2015,5(7):4133-4142. |
[134] | Li Y L, Wang J J, Li X F, et al. Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries[J]. Electrochemistry Communications, 2012,18:12-15. |
[135] | Lin Z Y, Waller G H, Liu Y, et al. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Carbon, 2013,53:130-136. |
[136] | Lin Z Y, Waller G H, Liu Y, et al. 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction[J]. Nano Energy, 2013,2(2):241-248. |
[137] | Sun B, Wang B, Su D W, et al. Graphene nanosheets as cathode catalysts for lithium-air batteries[J]. Carbon, 2012,50(2):727-733. |
[138] |
Yoo E, Zhou H S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts[J]. ACS Nano, 2011,5(4):3020-3026.
doi: 10.1021/nn200084u URL pmid: 21438513 |
[139] | Cheng Y, Zhang J, Jiang S P. Are metal-free pristine carbon nanotubes electrocatalytically active?[J]. Chemical Communication, 2015,51(72):13764-13767. |
[140] | Cheng Y H, Tian Y Y, Fan X Z, et al. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media[J]. Electrochimica Acta, 2014,143:291-296. |
[141] | Fuentes R E, Colón-Mercado H R, Fox E B, Electrochemical evaluation of carbon nanotubes and carbon black for the cathode of Li-air batteries[J]. Journal of Power Sources, 2014,255:219-222. |
[142] | Tian G L, Zhang Q, Zhang B, et al. Catalysts: Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity[J]. Advanced Functional Materials, 2014,24(38):5956-5961. |
[143] |
Yadav R M, Wu J, Kochandra R, et al. Carbon nitrogen nanotubes as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. ACS Applied Materials Interfaces, 2015,7(22):11991-12000.
doi: 10.1021/acsami.5b02032 URL pmid: 25970133 |
[144] | Wang M R, Lai Y Q, Fang L, et al. N-doped porous carbon derived from biomass as an advanced electrocatalyst for aqueous aluminium/air battery[J]. International Journal of Hydrogen Energy, 2016,40(46):16230-16237. |
[145] |
Zhang J T, Zhao Z H, Xia Z H, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015,10(5):444-452.
doi: 10.1038/nnano.2015.48 URL pmid: 25849787 |
[146] |
Zhang J T, Qu L T, Shi G Q, et al. N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J]. Angewandte Chemie International Edition, 2016,55(6):2230-2234.
doi: 10.1002/anie.201510495 URL pmid: 26709954 |
[147] |
Shinde S S, Lee C H, Sami A, et al. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-Air Batteries[J]. ACS Nano, 2017,11(1):347-357.
doi: 10.1021/acsnano.6b05914 URL pmid: 28001038 |
[148] |
Chen S, Duan J J, Jaroniec M, et al. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction[J]. Advanced Materials, 2014,26(18):2925-2930.
doi: 10.1002/adma.201305608 URL pmid: 24510748 |
[149] |
Li R, Wei Z D, Gou X L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution[J]. ACS Catalysis, 2015,5(7):4133-4142.
doi: 10.1021/acscatal.5b00601 URL |
[150] |
Zhang J T, Dai L M. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting[J]. Angewandte Chemie International Edition, 2016,55(42):13296-13300.
doi: 10.1002/anie.201607405 URL pmid: 27667798 |
[151] | Fu J, Hassan F M, Zhong C, et al. Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries[J]. Advanced Ma-terials, 2017,29(35):1702526. |
[152] |
Park J, Park M, Nam G, et al. All-solid-state cable-type flexible zinc-air battery[J]. Advanced Materials, 2015,27(8):1396-1401.
doi: 10.1002/adma.201404639 URL pmid: 25532853 |
[153] | Tang C, Wang B, Wang H F, et al. Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries[J]. Advanced Materials, 2017,29(37):1703185. |
[154] | Wang M F, Liu S S, Xu N, et al. Active Fe-Nx sites in carbon nanosheets as oxygen reduction electrocatalyst for flexible all-solid-state zinc-air batteries[J]. Advanced Sustainable Systems, 2017, 1(10):UNSP 1700085. |
[155] | Zhang X, Liu R R, Zang Y P, et al. Co/CoO nanoparticles immobilized on Co-N-doped carbon as trifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Commu-nications, 2016,52(35):5946-5949. |
[156] |
Anandhababu G, Abbas S C, Lv J, et al. Highly exposed Fe-N4 active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode[J]. Dalton Transactions, 2017,46(6):1803-1810.
doi: 10.1039/c6dt04705j URL pmid: 28102397 |
[157] |
Kong A G, Mao C Y, Lin Q P, et al. From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction[J]. Dalton Transactions, 2015,44(15):6748-6754.
doi: 10.1039/c4dt03726j URL pmid: 25619544 |
[158] | Tan X L (谭小莉), He D H (何灯红), Zhang X W (张兴旺). Preparations and electrochemical properties of Co@NC nanocomposites based on ZIF-67[J]. Journal of Electrochemistry (电化学), 2019,25(5):601-607. |
[159] | Wang J, Wu H H, Gao D F, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery[J]. Nano Energy, 2015,13:387-396. |
[160] | Zang Y P, Zhang H M, Zhang X, et al. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries[J]. Nano Research, 2016,9(7):2123-2137. |
[161] | Zhao Y, Kamiya K, Hashimoto K, et al. Efficient bifunctional Fe/C/N electrocatalysts for oxygen reduction and evolution reaction[J]. The Journal of Physical Chemistry C, 2015,119(5):2583-2588. |
[162] | Qiao Y Y, Yuan P F, Hu Y F, et al. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries[J]. Advanced Materials, 2018,30(46):1804504. |
[163] | Cheng W Z, Yuan P F, Lv Z R, et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries[J]. Applied Catalysis B: Environmental, 2020, 260: UNSP 118198. |
[164] | Li B Q, Zhang S Y, Wang B, et al. A porphyrin covalent organic framework cathode for flexible Zn-air batteries[J]. Energy & Environmental Science, 2018,11(7):1723-1729. |
[165] | Amiinu I S, Liu X B, Pu Z H, et al. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries[J]. Advanced Functional Materials, 2018,28(5):1704638. |
[166] |
Guo Y Y, Yuan P F, Zhang J N, et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries[J]. ACS Nano, 2018,12(2):1894-1901.
doi: 10.1021/acsnano.7b08721 URL pmid: 29361224 |
[167] |
Guo S Y, Yuan P F, Zhang J A, et al. Atomic-scaled cobalt encapsulated in P, N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media[J]. Chemical Communications, 2017,53(71):9862-9865.
doi: 10.1039/c7cc05476a URL pmid: 28825073 |
[168] | Chen B H, Jiang Z Q, Huang J L, et al. Cation exchange synjournal of NixCo3-xO4 (x=1.25) nanoparticles on aminated carbon nanotubes with high catalytic bifunctionality for the oxygen reduction/evolution reaction toward efficient Zn-air batteries[J]. Journal of Materials Chemistry A, 2018,6(20):9517-9527. |
[169] | Hu J, Wang L N, Shi L N, et al. Preparation of La1-xCaxMnO3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium[J]. Journal of Power Sources, 2014,269:144-151. |
[170] |
Park M G, Lee D U, Seo M H, et al. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries[J]. Small, 2017, 13(29):UNSP 1700518.
doi: 10.1002/smll.201700963 URL pmid: 28544287 |
[171] |
Zeng S, Chen H Y, Wang H, et al. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn-air batteries[J]. Small, 2017, 13(29):UNSP 1700518.
doi: 10.1002/smll.201700963 URL pmid: 28544287 |
[172] |
Li Y G, Gong M, Liang Y Y, et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nature Communications, 2013,4:1805.
doi: 10.1038/ncomms2812 URL pmid: 23651993 |
[173] | Zhong J H, Wang A L, Li G R, et al. Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications[J]. Journal of Materials Chemistry, 2012,22(12):5656-5665. |
[174] | Li X Z, Fang Y Y, Lin X Q, et al. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR[J]. Journal of Materials Chemistry A, 2015,3(33):17392-17402. |
[175] | Ma N, Jia Y, Yang X F, et al. Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions[J]. Journal of Materials Chemistry A, 2016,4(17):6376-6384. |
[176] | Ma L B, Hu Y, Chen R P, et al. Self-assembled ultrathin NiCO2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution[J]. Nano Energy, 2016,24:139-147. |
[177] |
Xu Y T, Chen B L, Nie J, et al. Reactive template-induced core-shell FeCo@C microspheres as multifunctional electrocatalysts for rechargeable zinc-air batteries[J]. Nanoscale, 2018,10(36):17021-17029.
doi: 10.1039/c8nr02492h URL pmid: 29923591 |
[178] | Xu N N, Zhang Y X, Zhang T, et al. Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries[J]. Nano Energy, 2019,57:176-185. |
[179] |
Liu Z Q, Cheng H, Li N, et al. ZnCO2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts[J]. Advanced Materials, 2016,28(19):3777-3784.
doi: 10.1002/adma.201506197 URL pmid: 26996677 |
[180] |
Chen Z, Yu A P, Higgins D, et al. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application[J]. Nano Letters, 2012,12(4):1946-1952.
doi: 10.1021/nl2044327 URL pmid: 22372510 |
[181] | Xu N N, Zhang Y X, Wang M, et al. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical bi-metallic electrocatalyst and heterostructure anion exchange membrane[J]. Nano Energy, 2019,65:USNP 104021. |
[182] | Han X P, Wu X Y, Zhong C, et al. NiCO2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. Nano Energy, 2017,31:541-550. |
[183] | Hao Y C, Xu Y Q, Liu W, et al. Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst[J]. Materials Horizons, 2018,5(1):108-115. |
[184] | Cui Z M, Fu G T, Li Y T, et al. Ni3FeN-supported Fe3Pt intermetallic nanoalloy as a high-performance bifunctional catalyst for metal-air batteries[J]. Angewandte Chemie International Edition, 2017,56(33):9901-9905. |
[185] | Wang Q, Shang L, Shi R, et al. 3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries’ cathodes[J]. Nano Energy, 2017,40:382-39. |
[186] | Ma T Y, Ran J, Dai S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes[J]. Angewan-dte Chemie International Edition in English, 2015,54(15):4646-4650. |
[187] | Ma T Y, Dai S, Qiao S Z. Self-supported electrocatalysts for advanced energy conversion processes[J]. Materials Today, 2016,19(5):265-273. |
[188] | Ma T Y, Dai S, Jaroniec M, et al. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes[J]. Jour-nal of the American Chemical Society, 2014,136(39):13925-13931. |
[189] |
Meng F L, Zhong H X, Bao D, et al. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-Air batteries[J]. Journal of the American Chemical Society, 2016,138(32):10226-10231.
doi: 10.1021/jacs.6b05046 URL pmid: 27463122 |
[190] |
Liu Q, Wang Y B, Dai L M, et al. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries[J]. Advanced Materials, 2016,28(15):3000-3006.
doi: 10.1002/adma.201506112 URL pmid: 26914270 |
[191] | Xu N N, Wilson J A, Wang Y D, et al. Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries[J]. Applied Catalysis B: Environmental, 2020,272:118953. |
[192] |
Ling T, Yan D Y, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt(II) oxide nano-rods for superior electrocatalysis[J]. Nature Communications, 2016,7:12876.
doi: 10.1038/ncomms12876 URL pmid: 27650485 |
[193] | Lee D U, Park M G, Park H W, et al. Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc-air batteries[J]. Electrochemistry Communications, 2015,60:38-41. |
[194] | Deng Y P, Jiang Y, Luo D, et al. Hierarchical porous double-shelled electrocatalyst with tailored lattice alkalinity toward bifunctional oxygen reactions for metal-air batteries[J]. ACS Energy Letters, 2017,2(12):2706-2712. |
[195] |
Yan Z H, Sun H M, Chen X, et al. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nature Communications, 2018,9(1):2373.
doi: 10.1038/s41467-018-04788-3 URL pmid: 29915288 |
[196] | Yuan Y F, Zhan C, He K, et al. The influence of large cations on the electrochemical properties of tunnel-structured metal oxides[J]. Nature Communications, 2016,7:13374. |
[1] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[2] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[3] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[4] | 倪静, 施兆平, 王显, 王意波, 吴鸿翔, 刘长鹏, 葛君杰, 邢巍. 低铱酸性氧析出电催化剂的研究进展[J]. 电化学(中英文), 2022, 28(9): 2214010-. |
[5] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[6] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[7] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[8] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
[9] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
[10] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
[11] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[12] | 徐明俊, 刘杰, 葛君杰, 刘长鹏, 邢巍. 长春应化所金属氮碳氧还原催化剂的研究进展[J]. 电化学(中英文), 2020, 26(4): 464-473. |
[13] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[14] | 梁 栋, 房恒义, 姚 硕, 于洁玫, 张昭良, 姜占坤, 高学平, 黄太仲. 不同结构及氮掺杂NiO/rGO氧还原催化剂的制备与性能研究[J]. 电化学(中英文), 2019, 25(5): 589-600. |
[15] | 张利华, 陈峻峰, 黄皖唐, 胡勇有, 程建华, 陈元彩. Cu-bipy-BTC衍生碳基材料的制备及其氧还原电催化性能[J]. 电化学(中英文), 2019, 25(4): 511-521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||