[1] Zhang J L, Xie Z, Zhang J J, et al. High temperature PEM fuel cells[J]. Journal of Power Sources, 2006, 160(2): 872-91. [2] Li Q, He R, Jensen J O, et al. PBI-based polymer membranes for high temperature fuel cells - preparation, characterization and fuel cell demonstration[J]. Fuel Cells, 2004, 4(3): 147-59. [3] Doyle M, Choi S K, Proulx G. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites[J]. Journal of The Electrochemical Society, 2000, 147(1): 34-37. [4] Authayanun S, Im-Orb K, Arpornwichanop A. A review of the development of high temperature proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2015, 36(4): 473-83. [5] Hou M(侯明), Yi B L(衣宝廉). Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry(电化学), 2012, 18(1): 1-13. [6] Ubong E U, Dimitrov B. Regression of the response variable of a high temperature PEMFC-PBI membrane[J]. Journal of The Electrochemical Society, 2010, 157(7): B1059-B1067. [7] Hao J, Li X, Yu S, et al. Development of proton-conducting membrane based on incorporating a proton conductor 1,2,4-triazolium methanesulfonate into the Nafion membrane[J]. Journal of Energy Chemistry, 2015, 24(2): 199-206. [8] Liu F Q(刘富强), Xing D M(邢丹敏), Yu J R(于景荣), et al. Nafion?/PTFE composite membrane for PEMFC[J]. Journal of Electrochemistry(电化学), 2002, 8(1): 86-92. [9] Cui L, Geng Q, Gong C L, et al. Novel sulfonated poly(ether ether ketone)/silica coated carbon nanotubes high-performance composite membranes for direct methanol fuel cell[J]. Polymers For Advanced Technologies, 2015, 26(5): 457-64. [10] BogolowskI N, Drillet J F. Appropriate balance between methanol yield and power density in portable direct methanol fuel cell[J]. Chemical Engineering Journal, 2015, 270: 91-100. [11] Wainright J S, Wang J T, Weng D, et al. Acid-doped polybenzimidazoles - A new polymer electrolyte[J]. Journal of The Electrochemical Society, 1995, 142(7): L121-L123. [12] Chang Z H, Pu H T, Wan D C, et al. Chemical oxidative degradation of polybenzimidazole in simulated environment of fuel cells[J]. Polymer Degradation and Stability, 2009, 94(8): 1206-1212. [13] Henkensmeier D, Cho H R, Kim H J, et al. Polybenzimidazolium hydroxides - Structure, stability and degradation[J]. Polymer Degradation and Stability, 2012, 97(3): 264-272. [14] Miyatake K, Chikashige Y, Higuchi E, et al. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications[J]. Journal of The American Chemical Society, 2007, 129(13): 3879-3887. [15] Pinar F J, Canizares P, Rodrigo M A, et al. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes[J]. Journal of Power Sources, 2015, 274: 177-185. [16] Li Q F, Rudbeck H C, chromik A, et al. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes[J]. Journal of Membrane Science, 2010, 347(1/2): 260-270. [17] Wang S, Zhang G, Han M, et al. Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8412-8421. [18] Li J, Li X J, Zhao Y, et al. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte[J]. Chemsuschem, 2012, 5(5): 896-900. [19] Itoh T, Hirai K, Tamura M, et al. Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells[J]. Journal of Power Sources, 2008, 178(2): 627-633. [20] Yang J S, Aili D, Li Q F, et al. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications[J]. Chemsuschem, 2013, 6(2): 275-282. [21] Lin X C, Liang X H, Poynton S D, et al. Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells[J]. Journal of Membrane Science, 2013, 443: 193-200. [22] Yan X M, He G H, Gu S, et al. Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(6): 5216-24. [23] Lu W T, Zhang G, Li J, et al. Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1,4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells[J]. Journal of Power Sources, 2015, 296: 204-214. [24] Wang K Y, Xiao Y C, Chung T S. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin[J]. Chemical Engineering Science, 2006, 61(17): 5807-5817. [25] Faraj M, Elia E, Boccia M, et al. New anion conducting membranes based on functionalized styrene-butadiene-styrene triblock copolymer for fuel cells applications[J]. Journal of Polymer Science Part A-polymer Chemistry, 2011, 49(15): 3437-3447. [26] Qiao J L, Fu J, Liu L L, et al. Synthesis and properties of chemically cross-linked poly(vinyl alcohol)-poly (acrylamide-co-diallyldimethylammonium chloride) (PVA-PAADDA) for anion-exchange membranes[J]. Solid State Ionics, 2012, 214: 6-12. [27] Pu H T, Wang L, Pan H Y, et al. Synthesis and characterization of fluorine-containing polybenzimidazole for proton conducting membranes in fuel cells[J]. Journal of Polymer Science Part A-polymer Chemistry, 2010, 48(10): 2115-2122. [28] Chang Z, Pu H, Wan D, et al. Chemical oxidative degradation of polybenzimidazole in simulated environment of fuel cells[J]. Polymer Degradation and Stability, 2009, 94(8): 1206-1212. [29] He D, Cho H R, Kim H J, et al. Polybenzimidazolium hydroxides -Structure, stability and degradation[J]. Polymer Degradation and Stability, 2012, 97(3): 264-272. [30] Li Q F, Rudbeck H C, A C, et al. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes[J]. Journal of Membrane Science, 2010, 347(1/2): 260-270. |