[1] Wang L, Zhang Y Y, Cheng C S, et al. Highly sensitive electrochemical biosensor for evaluation of oxidative stress based on the nanointerface of graphene nanocomposites blended with gold, Fe3O4, and platinum nanoparticles[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18441-18449.
[2] Fan L L(范丽丽), Wu L N(武丽娜), Qu Z Y(屈志宇), et al. Preparation of Pt/DNA-MWCNTs/GC electrode and its electrocatalytic activity for H2O2 reduction[J]. Journal of Electrochemistry(电化学), 2014, 20(5): 459-464.
[3] Emre F B, Ekiz F, Balan A, et al. Conducting polymers with benzothiadiazole and benzoselenadiazole- units for biosensor applications[J]. Sensors and Actuators B, 2011, 158(1): 117-123.
[4] Ates M, Sarac S A. Conducting polymer coated carbon surfaces and biosensor applications[J]. Progress in Organic Coating, 2009, 66(4): 337-358.
[5] Lin K C, Tsai T H, Chen S M. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film[J]. Biosensors and Bioelectronics, 2010, 26(2): 608-614.
[6] Xu J J, Peng R, Ran Q, et al. A highly soluble poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic-acid)/Au nanocomposite for horseradish peroxidase immobilization and biosensing[J]. Talanta, 2010, 82(4): 1511-1515.
[7] Rozlosnik N. New directions in medical biosensors employing poly(3,4-ethylenedioxythiophene) derivative-based electrodes[J]. Analytical and Bioanalytical Chemistry, 2009, 395(3): 637-645.
[8] Liu M M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: Non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability[J]. Biosensors and Bioelectronics, 2013, 45: 206-212.
[9] Pumera M, Ambrosi A, Bonanni A, et al. Graphene for electrochemical sensing and biosensing [J]. TrAC Trends in Analytical Chemistry, 2010, 29(9): 954-965.
[10] Ma J H(马静华), Wang R X(王睿翔), Tan Y L(谭一良), et al. Preparation and methanol electrooxidation of Pt/PMo12/PEDOT/GC electrodes[J]. Journal of Electrochemistry(电化学), 2013, 19(2): 164-168.
[11] He X, Chen L, Zhang X, et al. Enhanced electrocatalysis for methanol oxidation on ordered {[PdPW11O39]5-/Pt/PAMAM}n multilayer composites[J]. Fuel Cells, 2015, 15(1): 221-229.
[12] Genovese M, Foong Y W, Lian K. Designing polyoxometalate based layer-by-layer thin films on carbon nanomaterials for pseudocapacitive electrodes[J]. Journal of the Electrochemical Society, 2015, 162(5): 5041-5046.
[13] Guo Z P, Han D M, Wexler D, et al. Polyoxometallate-stabilized platinum catalysts on multi-walled carbon nanotubes for fuel cell applications[J]. Electrochimica Acta, 2008, 53(22): 6410-6416.
[14] Zhu L L(朱莉莉), Qu J Y(屈建莹), Wang J(王珏), et al. Electrochemical properties of tungstogermanate and electrocatalysis of H2O2 on GeW11Co/P-oPD/GC electrode [J]. Journal of Electrochemistry(电化学), 2011, 17(4): 410-415.
[15] Skunik M, Kulesza P J. Phosphomolybdate-modified multi-walled carbon nanotubes as effective mediating systems for electrocatalytic reduction of bromate[J]. Analytica Chimica Acta, 2009, 631(2): 153-160.
[16] Wlodarczyk R, Chojak M, Miecznikowski K, et al. Electroreduction of oxygen at polyoxometallate-modified glassy carbon-supported Pt nanoparticles[J]. Journal of Power Sources, 2006, 159(2): 802-809.
[17] Fan L L(范丽丽), Fan Y J(樊友军), Wang S S(王珊珊), et al. H2O2 biosensor based on Pt/PEDOT/PSS-graphene composite[J]. Chinese Journal of Sensors and Actuators(传感技术学报), 2013, 26(4): 446-451.
[18] Nagashree K L, Raviraj N H, Ahmed M F. Carbon paste electrodes modified by Pt and Pt-Ni microparticles dispersed in polyindole film for electrocatalytic oxidation of methanol[J]. Electrochimica Acta, 2010, 55: 2629-2635.
[19] Yin H S, Ai S Y, Shi W J, et al. A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase[J]. Sensors and Actuators B, 2009, 137(2): 747-753.
[20] Miao Y Q, Wang H, Shao Y Y, et al. Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2[J]. Sensors and Actuators B, 2009, 138(1): 182-188.
[21] Chen C C, Do J S, Gu Y S. Immobilization of HRP in mesoporous silica and its application for the construction of polyaniline modified hydrogen peroxide[J]. Sensors, 2009, 9(6): 4635-4648.
[22] Tan X C, Zhang J L, Tan S W, et al. Amperometric hydrogen peroxide biosensor based on Immobilization of hemoglobin on a glassy carbon electrode modified with Fe3O4/chitosan core-shell microspheres[J]. Sensors, 2009, 9(8): 6185-6199.
[23] Wang K, Liu Q, Wu X Y, et al. Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing[J]. Talanta, 2010, 82(1): 372-376.
[24] Cui X L, Li Z Z, Yang Y C, et al. Low-potential sensitive hydrogen peroxide detection based on nanotubular TiO2 and platinum composite electrode[J]. Electroanalysis, 2008, 20(9): 970-975.
[25] Shamsipur M, Asgari M, Mousavi M F, et al. A novel hydrogen peroxide sensor based on the direct electron transfer of catalase immobilized on nano-sized NiO/MWCNTs composite film[J]. Electroanalysis, 2012, 24(2): 357-367.
[26] Li S, Xiong J X, Shen J S, et al. A novel hydrogen peroxide sensor based on Ag nanoparticles decorated polyaniline/graphene composites[J]. Journal of Applied Polymer Science, 2015, 132(37): 42409/1-6. |