[1] Bard A J, Fox M A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research, 1995, 28(3): 141-145.
[2] Dresselhaus M, Thomas I. Alternative energy technologies[J]. Nature, 2001, 414: 332-337.
[3] Walter M G, Warren M L, McKone J R, et al. Solar water splitting cells[J]. Chemical reviews, 2010, 110(11): 6446-6473.
[4] Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences, 2006, 103(43):15729-15735.
[5] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686):972-974.
[6] Trasatti S. Electrocatalysis of hydrogen evolution: progress in cathode activation[J]. Advances in electrochemical science and engineering, 1992, 2: 1-85.
[7] McKone J R, Warren E L, Bierman M J, et al. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes[J]. Energy & Environmental Science, 2011, 4:3573-3583.
[8] Chianelli R R, Siadati M H, Rosa M P, et al. Catalytic properties of single layers of transition metal sulfide catalytic materials[J]. Catalysis Reviews, 2006, 48(1):1-41.
[9] Laursen A B, Kegnæs S, Dahl S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2012, 5: 5577-5591.
[10] Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28):10274-10277.
[11] Zhao Y F, Xie X Q, Zhang J Q, et al. MoS2 Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution[J]. Chemistry-A European Journal, 2015, 21: 15908-15913.
[12] Chen Z B, Kibsgaard J, Jaramillo T. Nanostructuring MoS2 for photoelectrochemical water splitting[J]. Proc. SPIE, Solar Hydrogen and Nano technology V, 2010, 7770(77700K):1-7.
[13] Nørskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen ev- olution[J]. Journal of The Electrochemical Society, 2005, 152(3):J23-J26.
[14] Nørskov J K, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid cata- lysts[J]. Nature chemistry, 2009, 1:37-46.
[15] Chhowalla M, Shin H S, Eda G. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature chemistry, 2013, 5,(4): 263-275.
[16] Karunadasa H I, Montalvo E, Sun Y J, et al. A Molecular MoS2 edge site mimic for catalytic hydrogen generation[J]. Science, 2012, 335(6069): 698 -702.
[17] Li Y G, Wang H L, Xie L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19):7296-7299.
[18] Jaramillo T F, Jørgensen K P, Bonde J, et al. Identification of active edge sites for electro- chemical H2 evolution from MoS2 nanocatalysts [J]. science, 2007, 317(5834):100-102.
[19] Bonde J, Moses P G, Jaramillo T F, et al. Hydrogen evolution on nanoparticulate transition metal sulfides[J]. Faraday discussions, 2009, 140:219-231.
[20] Hinnemann B, Moses P G, Bond J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15):5308-5309.
[21] Jaramillo T F, Bonde J, Zhang J D, et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts[J]. The Journal of Physical Chemistry C, 2008, 112(45): 17492-17498.
[22] Lauritsen J V, Kibsgaard J, Helveg S, et al. Size-dependent structure of MoS2 Nanocrystals [J]. nature nanotechnology, 2007, 2(1): 53-58.
[23] Tremiliosi-Filho G, Dall’Antonia L H, Jerkiewicz G. Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions[J.] Journal of Electro- analytical Chemistry, 2005, 578(1): 1–8.
[24] Burke L D, Hurley L M, Lodge V E. The effect of severe thermal pretreatment on the redox behaviour of gold in aqueous acid solution[J]. Journal of Solid State Electrochemistry, 2001, 5:250-260.
[25] Brett C M?A, Kresak S, Hianik T, et al. Studies on Self-Assembled Alkanethiol Monolayers Formed at Applied Potential on Polycrystalline Gold Electrodes[J]. Electroanalysis, 2003, 15(5-6): 557-565.
[26] Ulman A. Formation and structure of self- assembled monolayers[J]. Chemical reviews, 1996, 96(4): 1533-1554.
[27] Huang J, Hemminger J C. Photooxidation of thiols in self-assembled monolayers on gold[J]. Journal of the American Chemical Society, 1993, 115(8): 3342-3343.
[28] Laibinis P E, Whitesides G M, Allara D L, et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold[J]. Journal of the American Chemical Society, 1991, 113(19):7152-7167.
[29] Voiry D, Salehi M, Silva R, et al. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction[J]. Nano Letters, 2013, 13(12):6222-6227. |