(1) Chen, Z.; Augustyn, V.; Wen, J; et al. High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. [J]. Advanced Materials, 2011, 23, 791-795.
(2) Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. [J]. Nano Letters, 2011, 11, 1215-1220.
(3) Aricò, A. S.; Bruce, P.; Scrosati, B.; et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. [J]. Nature Materials, 2005, 4, 366–377.
(4) Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. [J]. Advanced Materials, 2008, 20, 2878-2887.
(5) Peng, C.; Zhang, S. W.; Zhou, X. H.; et al. Unequalisation of Electrode Capacitances for Enhanced Energy Capacity in Asymmetrical Supercapacitors. [J]. Energy & Environmental Science, 2010, 3, 1499-1502.
(6) Zhang, L. L.; Zhao, X. S. Carbon-Based Materials as Supercapacitor Electrodes. [J]. Chemical Society Reviews, 2009, 38, 2520-2531.
(7) Peng, X.; Peng, L.; Wu, C.; et al. Two Dimensional Nanomaterials for Flexible Supercapacitors. [J]. Chemical Society Reviews, 2014, 43, 3303-3323.
(8) Rakhi, R. B.; Chen, W.; Cha, D.; et al. Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. [J]. Nano Letters, 2012, 12, 2559-2567.
(9) Cheng, Y.; Lu, S.; Zhang, H.; et al. Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. [J]. Nano Letters, 2012, 12, 4206–4211.
(10) Maruyama, H.; Nakano, H.; Nakamoto, M.; et al. High-Power Electrochemical Energy Storage System Employing Stable Radical Pseudocapacitors. [J]. Angewandte Chemie International Edition, 2014, 126, 1348–1352.
(11) Richey, F. W.; Dyatkin, B.; Gogotsi, Y.; et al. Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. [J]. Journal of the American Chemical Society, 2013, 135, 12818-12826.
(12) Lee, C. Y.; Bond, A. M. Revelation of Multiple Underlying RuO2 Redox Processes Associated with Pseudocapacitance and Electrocatalysis. [J]. Langmuir, 2010, 26, 16155-16162.
(13) Chen, L. Y.; Hou, Y.; Kang, J. L.; et al. Toward the Theoretical Capacitance of RuO2 Reinforced by Highly Conductive Nanoporous Gold. [J]. Advanced Energy Materials, 2013, 3, 851-856.
(14) Ding, S. J.; Zhu, T.; Chen, J.; et al. Controlled Synthesis of Hierarchical NiO Nanosheet Hollow Spheres with Enhanced Supercapacitive Performance. [J]. Journal of Materials Chemistry, 2011, 21, 6602-6606.
(15) Lee, J. W.; Ahn, T.; Kim, J. H.; et al. Nanosheets Based Mesoporous NiO Microspherical Structures via Facile and Template-Free Method for High Performance Supercapacitors. [J]. Electrochimica Acta, 2011, 56, 4849-4857.
(16) Wang, X. Y.; Wang, X. Y.; Yi, L. H.; et al. Preparation and Capacitive Properties of the Core–Shell Structure Carbon Aerogel Microbeads- Nanowhisker-Like NiO Composites. [J]. Journal of Power Sources, 2013, 224, 317-323.
(17) Deori, K.; Ujjain, S. K.; Sharma, R. K.; et al. Morphology Controlled Synthesis of Nanoporous Co3O4 Nanostructures and Their Charge Storage Characteristics in Supercapacitors. [J]. ACS Applied Materials & Interfaces, 2013, 5, 10665-10672.
(18) Zhang, Y. Z.; Wang, Y.; Xie, Y. L.; et al. Porous Hollow Co3O4 with Rhombic Dodecahedral Structures for High-Performance Supercapacitors. [J]. Nanoscale, 2014, 6, 14354-14359.
(19) Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; et al. Freestanding Co3O4 Nanowire Array for High Performance Supercapacitors. [J]. RSC Advances, 2012, 2, 1835-1841.
(20) Zhong, J. H.; Wang, A. L.; Li, G. R.; et al. Co3O4/Ni(OH)2 Composite Mesoporous Nanosheet Networks as a Promising Electrode for Supercapacitor Applications. [J]. Journal of Materials Chemistry, 2012, 22, 5656- 5665.
(21) Liu, M. C.; Kong, L. B.; Lu, C.; et al. A Sol–Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. [J]. ACS Applied Materials & Interfaces, 2012, 4, 4631-4636.
(22) Shen, L. F.; Yu, L.; Yu, X. Y.; et al. Self-Templated Formation of Uniform NiCo2O4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors. [J]. Angewandte Chemie International Edition, 2015, 54, 1868-1872.
(23) Li, W. Y.; Xu, K. B.; Song, G. S.; et al. Facile Synthesis of Porous MnCo2O4.5 Hierarchical Architectures for High-Rate Supercapacitors. [J]. CrystEngComm, 2014, 16, 2335-2339.
(24) Zhu, D. D.; Wang, Y. D.; Yuan, G. L.; et al. High-Performance Supercapacitor Electrodes Based on Hierarchical Ti@Mno2 Nanowire Arrays. [J]. Chemical Communications, 2014, 50, 2876-2878.
(25) Yuan, C. Z.; Zhang, X. G.; Su, L. H.; et al. Facile Synthesis and Self-Assembly of Hierarchical Porous NiO Nano/Micro Spherical Superstructures for High Performance Supercapacitors. [J]. Journal of Materials Chemistry, 2009, 19, 5772-5777.
(26) Liang, K.; Tang, X. Z.; Hu, W. C. High-Performance Three-Dimensional Canoporous NiO Film as A Supercapacitor Electrode. [J]. Journal of Materials Chemistry, 2012, 22, 11062-11067.
(27) Cao, C. Y.; Guo, W.; Cui, Z. M.; et al. Microwave-assisted Gas/Liquid Interfacial Synthesis of Flowerlike NiO Hollow Nanosphere Precursors and Their Application as Supercapacitor Electrodes. [J]. Journal of Materials Chemistry, 2011, 21, 3204-3209.
(28) Wang, D. W.; Li, F.; Liu, M.; et al. 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. [J]. Angewandte Chemie International Edition, 2008, 47, 373-376.
(29) Wang, X.; Yan, C. Y.; Sumboja, A.; et al. High Performance Porous Nickel Cobalt Oxide Nanowires for Asymmetric Supercapacitor. [J]. Nano Energy, 2014, 3, 119-126.
(30) Zhang, X.; Zhao, Y. Q.; Xu, C. L. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. [J]. Nanoscale, 2014, 6, 3638–3646.
(31) Lu, X. F.; Wu, D. J.; Li, R. Z.; et al. Hierarchical NiCo2O4 nanosheets @hollow microrod arrays for high-performance asymmetric supercapacitors. [J]. Journal of Materials Chemistry A, 2014, 2, 4706-4713.
(32)Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; et al. Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors. [J]. Journal of Materials Chemistry, 2011, 21, 10504-10511. |