[1] Katsounaros I, Cherevko S, Zeradjanin A R, et al. Oxygen electrochemistry as a cornerstone for sustainable energy conversion[J]. Angewante Chemie International Edition, 2014, 53 (1):102-121.
[2] Chen S G, Wei Z D. Recent advances of electrocatalyst, catalyst utilization and water management in polymer electrolyte membrane fuel cells[J]. Science of Advanced Materials 2015, 7 (10): 2053-2068.
[3] Nie Y, Li L, Wei Z D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction[J]. Chemical Society Reviews, 2015, 44 (8): 2168-2201.
[4] Wang Q, Zhou, Z Y, Lai, Y J, et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing[J]. Journal of the American Chemical Society, 2014, 136 (31): 10882-10885.
[5] Ding W, Wei Z D, Chen S G, et al. Space-confinement-induced synthesis of pyridinic- and pyrrolic nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angewante Chemie International Edition, 2013, 52 (45): 11755 –11759.
[6] Wu B H, Zheng N F. Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today, 2013, 8 (2): 168-197.
[7] Bard A J, Fan F F, Kwak J. et al. Scanning electrochemical microscopy introduction and principal[J]. Analytical Chemistry, 1989, 61 (2): 132-138. [8] Binnig G, Rohrer H. Scanning tunneling microscopy[J]. Helvetica Physica Acta, 1982, 55:726–735.
[9] Pohl D W, Denk W, Lanz M. Optical stethoscopy image recording with resolution λ/20[J]. Applied Physics Letters, 1984, 44 (7): 651–653
[10] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 1986, 56: 930-933.
[11] Bard A J, Mirkin M V. Scanning electrochemical microscopy[M]. New York: Marcel Dekker, Inc. 2001.1-16.
[12] Katemann B B, Schuhmann W. Fabrication and characterization of needle-type Pt-disk nanoelectrodes[J] Electroanalysis, 2002, 14: 22-28. [13]Lu X Q, Zhi F P, Shang H, et al. Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode[J]. Electrochimica Acta, 2010, 55 (11): 3634-3642.
[14] Lu X Q, Wang T X, Zhou X B et al. Investigation of ion transport traversing the "ion channels" by scanning electrochemical microscopy (SECM) [J]. Journal of Physical Chemistry C, 2011, 115 (11): 4800-4805.
[15] Fan Y R, Huang Y, Jiang,Y et al. Comparative study on the interfacial electron transfer of zinc porphyrins with meso-pi-extension at a 2(n) pattern [J]. Journal of Colloid and Interface Science, 2016, 462: 100-109.
[16] Zhan D P, Li X, Zhan W, et al. Scanning electrochemical microscopy 58. the application of a micropipette-supported ITIES tip to detect Ag+ and study its effect on fibroblast cells[J]. Analytical Chemistry, 2007, 79 (14): 5225-5231.
[17] Wu Z Q, Jia, W Z, Wang K, et al. Exploration of two-enzyme coupled catalysis system using scanning electrochemical microscopy[J]. Analytical Chemistry, 2012, 84 (24): 10586-10592.
[18] Nebel M, Gruetzke S, Diab N, et al. Visualization of oxygen consumption of single living cells by scanning electrochemical microscopy: the influence of the faradaic tip reaction[J]. Angewante Chemie International Edition, 2013, 52 (24): 6335-6338.
[19] Zhan D P, Yang D Z, Yin B S, et al. Electrochemical behaviors of single microcrystals of iron hexacyanides/NaCl solid solution[J]. Analytical Chemistry, 2012, 84 (21): 9276-9281.
[20] Gao S J, Dong C F, Luo H, et al. Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on 304 stainless steel by magnetron sputtering[J]. Electrochimical Acta, 2013, 114: 233-241.
[21] Li C X, Li L, Wang C, et al. Study of the protection performance of self-assembled monolayers on copper with the scanning electrochemical microscope[J]. Corrosion Science, 2014, 80: 511-516.
[22] Ma L, Zhou H, Xin S L, et al. Characterization of local electrocatalytical activity of nanosheet-structured ZnCo2O4/carbon nanotubes composite for oxygen reduction reaction with scanning electrochemical microscopy Electrochimica Acta[J]. 2015, 178: 767-777.
[23] Shen Y, Tefashe U M, Nonomura K et al. Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED[J]. Electrochim. Acta, 2009, 55: 458-464.
[24] Shen Y, Tr?uble M, Wittstock G. Detection of hydrogen peroxide produced during electrochemical oxygen reduction using scanning electrochemical microscopy[J]. Analytical Chemistry, 2008, 80 (3): 750-759.
[25] Zhu X Y, Qiao Y H, Zhang X, et al. Fabrication of metal nanoelectrodes by interfacial reactions[J]. Analytical Chemistry, 2014, 86 (14): 7001-7008.
[26] Li Q, Xie S B, Liang Z W, et al. Fast ion-transfer processes at nanoscopic liquid/liquid interfaces[J]. Angewante Chemie International Edition, 2009, 48 (43): 8010-8013.
[27] Liu S J, Li Q, Shao Y H. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces[J]. Chemical Society Reviews, 2011, 40 (5): 2236-2253.
[28] Li F , Unwin P R. Scanning electrochemical microscopy (SECM) of photoinduced electron transfer kinetics at liquid/liquid interfaces[J]. Journal of Physical Chemistry C, 2015, 119 (8): 4031-4043.
[29] Eckhard K, Chen X X, Turcu F. et al. Redox-competition mode of scanning electrochemical microscopy (SECM) for visualisation of local catalytic activity[J]. Physical Chemistry Chemical Physics, 2006, 8: 5359-5365.
[30] Eckhard K, Schuhmann W. Localised visualization of O2 consumption and H2O2 formation by means of SECM for the characterization of fuel cell catalyst activity. Electrochimica Acta, 2007, 53: 1164-1169.
[31] Chen X X, Eckhard K, Zhou M, et al. Electrocatalytic activity of spots of electrodeposited fuel-cell catalysts on carbon nanotubes modified glassy carbon[J]. Analytical Chemistry, 2009, 81 (18): 7597-7603.
[32] Okunola A O, Nagaiah T C, Chen X X, et al. Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM) [J]. Electrochimica Acta, 2009, 54: 4971-4978.
[33] Guadagnini L, Maljusch A, Chen X X, et al. Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM) [J]. Electrochimica Acta, 2009, 54: 753-3758.
[34] Nagaiah T C, Maljusch A, Chen X X, et al. Visualization of the local catalytic activity of electrodeposted Pt-Ag catalysts for oxygen reduction by means of SECM[J]. ChemPhysChem, 2009, 10 (15): 2711-2718.
[35] Nagaiah T C, Sch?fer D, Schuhmann W, et al. Electrochemically deposited Pd-Pt and Pd-Au co-deposits on graphite electrodes for electrocatalytic H2O2 reduction[J]. Analytical Chemistry, 2013, 85 (16): 7897-7903.
[36] Maljusch A, Nagaiah T C, Schwamborn S, et al. Pt-Ag catalysts as cathode material for oxygen-depolarized electrodes in hydrochloric acid electrolysis[J]. Analytical Chemistry, 2010, 82 (5): 1890-1896.
[37] Kulp C, Chen X X, Puschhof A, et al. Electrochemical synthesis of core-shell catalysts for electrocatalytic applications[J]. ChemPhysChem, 2010, 11 (13): 2854-2861.
[38] Schwamborn S, Stoica L, Chen X X, et al. Patterned CNT for screening oxygen reduction activity by SECM[J]. ChemPhysChem, 2010, 11 (1): 74-78.
[39] Kundu S, Nagaiah T C, Chen X X, et al. Synthesis of an improved hierarchical carbon-fiber composite as a catalyst support for platinum in ORR[J]. Carbon, 2012, 50 (12): 4534-4542.
[40] Dobrzeniecka A, Zeradjanin A. R, Masa J, et al. Evaluation of kinetic constants on porous, non-noble catalyst layers for oxygen reduction - a comparative study between SECM and hydrodynamic methods[J]. Catal. Today, 2016, 262: 74-81.
[41] Maljusch A, Sch?nberger B, Lindner A, et al. An integrated SKP-SECM system: development and first applications[J]. Analytical Chemistry, 2011, 83 (15): 6114-6120.
[42] Maljusch A, Henry J B, Tymoczko J, et al. Characterisation of non-uniform functional surfaces: towards linking basic surface properties with electrocatalytic activity[J]. RSC Advances, 2014, 4 (4): 1532-1537.
[43] Schaefer D, Puschhof A, Schuhmann W. Scanning electrochemical microscopy at variable temperatures[J]. Physical Chemistry Chemical Physics, 2013, 15 (14): 5215-5223.
[44] Nebel M, Erichsen T, W. Schuhmann, Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts[J]. Beilstein Journal of Nanotechnology, 2014, 5: 141-151.
[45] Maljusch A, Ventosa E, Rincón R.A, et al. Revealing onset potentials using electrochemical microscopy to assess the catalytic activity of gas-evolving electrodes[J]. Electrochemical Communications, 2014, 38: 142–145.
[46] Botz A J R, Nebel M, Rincon R A, et al. Onset potential determination at gas-evolving catalysts by means of constant-distance mode positioning of nanoelectrodes[J]. Electrochimica Acta, 2015, 179: 38-44.
[47] Zeradjanin A R, Schilling T, Seisel S, et al. Visualization of chlorine evolution at dimensionally stable anodes by means of scanning electrochemical microscopy[J]. Analytical Chemistry, 2011, 83 (20): 7645–7650.
[48] Zeradjanin A R, Topalov A A, Overmeere Q V, et al. Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation[J]. RSC Advances, 2014, 4 (19): 9579-9587.
[49] Chen X X, Maljusch A, Rincón R A, et al. Local visualization of catalytic activity at gas evolving electrodes using frequency-dependent scanning electrochemical microscopy[J]. Chemical Communications, 2014, 50 (87): 13250-13253.
[50] Chen X X, Botz A J R, Masa J, et al. Characterization of bifunctional electrocatalysts for oxygen reduction and evolution by means of SECM[J]. Journal of Solid State Electrochemistry, 2016, DOI 10.1007/s10008-015-3028-z.
|