电化学(中英文) ›› 2022, Vol. 28 ›› Issue (10): 2214008. doi: 10.13208/j.electrochem.2214008
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2022-06-29
修回日期:
2022-07-12
出版日期:
2022-10-28
发布日期:
2022-08-03
Received:
2022-06-29
Revised:
2022-07-12
Published:
2022-10-28
Online:
2022-08-03
Contact:
Tel: (86-10)64412131, E-mail: 摘要:
与传统化石能源制氢技术相比,利用可再生能源驱动电解水制氢技术具有绿色可持续和制氢效率高等优势,被认为是目前最具前景的制氢方式。然而, 由于电解水两极反应动力学缓慢、 催化剂稳定性较差, 限制了其大规模发展。此外, 阳极析氧反应存在较高的过电势, 从而导致当前制氢能耗与成本较高, 严重制约了其商业化应用。 为了解决上述问题与挑战,本文对当前发展较为成熟的碱性电解水技术进行了综合讨论与分析。 首先, 对电解水发展历程中的重要节点进行了总结, 便于读者了解该领域。进一步, 从电催化剂、 电极、 反应和系统的角度深入总结了提升电解水制氢性能的有效策略。作者分别介绍了近年来层状双金属氢氧化物基电解水催化剂、电解水制氢耦合氧化反应以及可再生能源驱动的电解水系统的重要研究进展; 同时对结构化催化剂在电解水应用中的构效关系进行了深入分析。最后, 对该领域存在的挑战和未来发展方向进行了展望,希望能为氢能的发展和推广提供一定的思路。
谢文富, 邵明飞. 碱性电解水高效制氢[J]. 电化学(中英文), 2022, 28(10): 2214008.
Wen-Fu Xie, Ming-Fei Shao. Alkaline Water Electrolysis for Efficient Hydrogen Production[J]. Journal of Electrochemistry, 2022, 28(10): 2214008.
Electrocatalyst | Overpotential/V | Stability/h | Ref. |
---|---|---|---|
C: CoNiP@LDH A: CoNiP@LDH | 1.44@10 mA·cm-2 | 20@10 mA·cm-2 | [ |
C: (Ni,Fe)S2@MoS2 A: (Ni,Fe)S2@MoS2 | 1.56@10 mA·cm-2 | 24@10 mA·cm-2 | [ |
C: Ni-MoN A: stainless-steel mat | 1.613@100 mA·cm-2 | 100@100 mA·cm-2 | [ |
C: Ni(OH)2/Ni3S2 A: Ni(OH)2/Ni3S2 | 1.49@10 mA·cm-2 | 120@20 mA·cm-2 | [ |
C: NF-Na-Fe-Pt A: NF-Na-Fe-Pt | 1.56@10 mA·cm-2 | 12@10 mA·cm-2 | [ |
C: FeCoP A: FeCoP | 1.60@10 mA·cm-2 | 20@10 mA·cm-2 | [ |
C: FeCoNi(S) A: FeCoNi(S) | 1.53@10 mA·cm-2 | 2000@500 mA·cm-2 | [ |
C: Ni-Co-Fe-P A: Ni-Co-Fe-P | 1.46@10 mA·cm-2 | 100@100 mA·cm-2 | [ |
C: NiIIICoIIFe-O@NF A: NiIIICoIIFe-O@NF | 1.455@10 mA·cm-2 | 100@1.53 V | [ |
C: CoFeP TPAs A: CoFeP TPAs | 1.47@10 mA·cm-2 | 100@20 mA·cm-2 | [ |
[1] |
Wang J, Gao Y, Kong H, Kim J, Choi S, Ciucci F, Hao Y, Yang S, Shao Z, Lim J. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances[J]. Chem. Soc. Rev., 2020, 49(24): 9154-9196.
doi: 10.1039/d0cs00575d pmid: 33140778 |
[2] | Xu L L, Ren D Y, Zhao X F, Yi Y. Janus-TiNbCO2 for hydrogen evolution reaction with high conductivity and catalytic activity[J]. J. Electrochem., 2021, 27(5): 570-578. |
[3] |
Huang C Q, Zhou J Q, Duan D S, Zhou Q C, Wang J M, Peng B W, Yu L, Yu Y. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism[J]. Chinese J. Catal., 2022, 43(8): 2091-2110.
doi: 10.1016/S1872-2067(21)64052-4 URL |
[4] |
Boppella R, Tan J, Yang W, Moon J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.
doi: 10.1002/adfm.201807976 URL |
[5] |
Cao X Y, Xia J F, Meng X, Xu J Y, Liu Q Y, Wang Z H. Stimuli-responsive DNA-gated nanoscale porous carbon derived from ZIF-8[J]. Adv. Funct. Mater., 2019, 29(34): 1902237.
doi: 10.1002/adfm.201902237 URL |
[6] |
Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S, Sun C H, Bu X H. Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2017, 56(42): 13001-13005.
doi: 10.1002/anie.201707238 URL |
[7] |
Tang C, Gan L F, Zhang R, Lu W B, Jiang X E, Asiri A M, Sun X P, Wang J, Chen L. Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight[J]. Nano Lett., 2016, 16(10): 6617-6621.
doi: 10.1021/acs.nanolett.6b03332 URL |
[8] |
He Y M, Liu L R, Zhu C, Guo S S, Golani P, Koo B, Tang P Y, Zhao Z Q, Xu M Z, Yu P, Zhou X, Gao C T, Wang X W, Shi Z D, Zheng L, Yang J F, Shin B, Arbiol J, Duan H G, Du Y H, Heggen M, Dunin-Borkowski R E, Guo W L, Wang Q J, Zhang Z H, Liu Z. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production[J]. Nat. Catal., 2022, 5(3): 212-221.
doi: 10.1038/s41929-022-00753-y URL |
[9] |
Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nat. Catal., 2018, 1(12): 985-992.
doi: 10.1038/s41929-018-0195-1 URL |
[10] | Cao E P, Chen Z M, Wu H, Yu P, Wang Y, Xiao F, Chen S, Du S C, Xie Y, Wu Y Q, Ren Z Y. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution[J]. An-gew. Chem. Int. Ed., 2020, 59(10): 4154-4160. |
[11] |
Xu J Y, Liu T F, Li J J, Li B, Liu Y F, Zhang B S, Xiong D H, Amorim I, Li W, Liu L F. Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide[J]. Energy Environ. Sci., 2018, 11(7): 1819-1827.
doi: 10.1039/C7EE03603E URL |
[12] |
Zheng Z L, Yu L, Gao M, Chen X Y, Zhou W, Ma C, Wu L H, Zhu J F, Meng X Y, Hu J T, Tu Y C, Wu S S, Mao J, Tian Z Q, Deng D H. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer[J]. Nat. Commun., 2020, 11(1): 3315.
doi: 10.1038/s41467-020-17199-0 URL |
[13] |
Liu W, Wang X T, Wang F, Du K F, Zhang Z F, Guo Y Z, Yin H Y, Wang D H. A durable and pH-universal self-standing MoC-Mo2C heterojunction electrode for efficient hydrogen evolution reaction[J]. Nat. Commun., 2021, 12(1): 6776.
doi: 10.1038/s41467-021-27118-6 URL |
[14] |
Jiang K, Liu B Y, Luo M, Ning S C, Peng M, Zhao Y, Lu Y R, Chan T S, de Groot F M F, Tan Y W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction[J]. Nat. Commun., 2019, 10(1): 1743.
doi: 10.1038/s41467-019-09765-y pmid: 30988327 |
[15] |
Zhang R, Wang X X, Yu S J, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K, Hu W P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction[J]. Adv. Mater., 2017, 29(9): 1605502.
doi: 10.1002/adma.201605502 URL |
[16] |
Zhang X, Yu X L, Zhang L J, Zhou F, Liang Y Y, Wang R H. Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2018, 28(16): 1706523.
doi: 10.1002/adfm.201706523 URL |
[17] |
Tian F Y, Geng S, He L, Huang Y R, Fauzi A, Yang W W, Liu Y Q, Yu Y S. Interface engineering: PSS-PPy wrapping amorphous Ni-Co-P for enhancing neutral-pH hydrogen evolution reaction performance[J]. Chem. Eng. J., 2021, 417: 129232.
doi: 10.1016/j.cej.2021.129232 URL |
[18] |
Gupta S, Patel N, Miotello A, Kothari D C. Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction[J]. J. Power Sources, 2015, 279: 620-625.
doi: 10.1016/j.jpowsour.2015.01.009 URL |
[19] |
Gao R, Dai Q B, Du F, Yan D P, Dai L M. C60-adsorbed single-walled carbon nanotubes as metal-free, pH-universal, and multifunctional catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution[J]. J. Am. Chem. Soc., 2019, 141(29): 11658-11666.
doi: 10.1021/jacs.9b05006 URL |
[20] |
Yang M J, Zhang Y, Jian J H, Fang L, Li J, Fang Z S, Yuan Z K, Dai L M, Chen X D, Yu D S. Donor-acceptor nanocarbon ensembles to boost metal-free all-pH hydrogen evolution catalysis by combined surface and dual electronic modulation[J]. Angew. Chem. Int. Ed., 2019, 58(45): 16217-16222.
doi: 10.1002/anie.201907826 pmid: 31424611 |
[21] |
Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. J. Am. Chem. Soc., 2015, 137(44): 14023-14026.
doi: 10.1021/jacs.5b08186 URL |
[22] |
Cao D F, Sheng B B, Qi Z H, Xu W J, Chen S M, Moses O A, Long R, Xiong Y J, Wu X J, Song L. Self-optimizing iron phosphorus oxide for stable hydrogen evolution at high current[J]. Appl. Catal. B Environ., 2021, 298: 120559.
doi: 10.1016/j.apcatb.2021.120559 URL |
[23] | Zhang S C, Wang W B, Hu F L, Mi Y, Wang S Z, Liu Y W, Ai X M, Fang J K, Li H Q, Zhai T Y. 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA·cm-2-level-current-density hydrogen evolution over 100 h in neutral water[J]. Nano-Micro Lett., 2020, 12(1): 140. |
[24] |
Xu Q C, Jiang H, Zhang H X, Hu Y J, Li C Z. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting[J]. Appl. Catal. B Environ., 2019, 242: 60-66.
doi: 10.1016/j.apcatb.2018.09.064 URL |
[25] |
Liu Y, Yang Y P, Peng Z K, Liu Z Y, Chen Z M, Shang L, Lu S Y, Zhang T R. Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values[J]. Nano Energy, 2019, 65: 104023.
doi: 10.1016/j.nanoen.2019.104023 URL |
[26] |
Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z B, Ren W C, Cheng H M, Li J, Liu B L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm-2[J]. Adv. Funct. Mater., 2021, 31(21): 2010367.
doi: 10.1002/adfm.202010367 URL |
[27] |
Nairan A, Liang C W, Chiang S W, Wu Y, Zou P C, Khan U, Liu W D, Kang F Y, Guo S J, Wu J B, Yang C. Proton selective adsorption on Pt-Ni nano-thorn array electrodes for superior hydrogen evolution activity[J]. Energy Environ. Sci., 2021, 14(3): 1594-1601.
doi: 10.1039/D1EE00106J URL |
[28] |
Wu L B, Zhang F H, Song S W, Ning M H, Zhu Q, Zhou J Q, Gao G H, Chen Z Y, Zhou Q C, Xing X X, Tong T, Yao Y, Bao J M, Yu L, Chen S, Ren Z F. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics[J]. Adv. Mater., 2022, 34(21): 2201774.
doi: 10.1002/adma.202201774 URL |
[29] |
Wu X K, Wang Z C, Zhang D, Qin Y N, Wang M H, Han Y, Zhan T R, Yang B, Li S X, Lai J P, Wang L. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution[J]. Nat. Commun., 2021, 12(1): 4018.
doi: 10.1038/s41467-021-24322-2 URL |
[30] |
Menezes P W, Indra A, Zaharieva I, Walter C, Loos S, Hoffmann S, Schlögl R, Dau H, Driess M. Helical cobalt borophosphates to master durable overall water-splitting[J]. Energy Environ. Sci., 2019, 12(3): 988-999.
doi: 10.1039/C8EE01669K URL |
[31] |
Qian G F, Chen J L, Yu T Q, Luo L, Yin S B. N-doped graphene-decorated NiCo alloy coupled with mesoporous NiCoMoO nano-sheet heterojunction for enhanced water electrolysis activity at high current density[J]. Nano-Micro Lett., 2021, 13(1): 77.
doi: 10.1007/s40820-021-00607-5 pmid: 34138320 |
[32] |
Xie W F, Li Z H, Shao M F, Wei M. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
doi: 10.1007/s11705-018-1719-6 |
[33] |
Yu Z Y, Duan Y, Feng X Y, Yu X X, Gao M R, Yu S H. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects[J]. Adv. Mater., 2021, 33(31): 2007100.
doi: 10.1002/adma.202007100 URL |
[34] |
Lagadec M F, Grimaud A. Water electrolysers with closed and open electrochemical systems[J]. Nat. Mater., 2020, 19(11): 1140-1150.
doi: 10.1038/s41563-020-0788-3 pmid: 33020614 |
[35] | Li M T, Zheng X Q, Li L, Wei Z D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media[J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054. |
[36] | Qin X P, Zhu S Q, Zhang L L, Sun S H, Shao M H. Theoretical studies of metal-N-C for oxygen reduction and hydrogen evolution reactions in acid and alkaline solutions[J]. J. Electrochem., 2021, 27(2): 185-194. |
[37] |
Zhang S B, Wu Y F, Zhang Y X, Niu Z Q. Dual-atom catalysts: controllable synthesis and electrocatalytic applications[J]. Sci. China Chem., 2021, 64(11): 1908-1922.
doi: 10.1007/s11426-021-1106-9 URL |
[38] | Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Norskov J K. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): 23-26. |
[39] |
Hinnemann B, Moses P G, Bonde J, Jörgensen K P, Nielsen J H, Horch S, Chorkendorff I, Nörskov J K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2005, 127(15): 5308-5309.
pmid: 15826154 |
[40] |
Jaramillo Thomas F, Jörgensen Kristina P, Bonde J, Nielsen Jane H, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007, 317(5834): 100-102.
pmid: 17615351 |
[41] |
Zheng Y, Jiao Y, Zhu Y H, Li L H, Han Y, Chen Y, Du A J, Jaroniec M, Qiao S Z. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat. Commun., 2014, 5(1): 3783.
doi: 10.1038/ncomms4783 URL |
[42] |
Tian J Q, Liu Q, Asiri A M, Sun X P. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. J. Am. Chem. Soc., 2014, 136(21): 7587-7590.
doi: 10.1021/ja503372r pmid: 24830333 |
[43] |
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Single-atom catalysts: synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264.
doi: 10.1016/j.joule.2018.06.019 URL |
[44] |
Cheng N C, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B W, Li R Y, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016, 7(1): 13638.
doi: 10.1038/ncomms13638 URL |
[45] |
Li A L, Ooka H, Bonnet N, Hayashi T, Sun Y M, Jiang Q K, Li C, Han H X, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angew. Chem. Int. Ed., 2019, 58(15): 5054-5058.
doi: 10.1002/anie.201813361 pmid: 30869187 |
[46] |
Yang F N, Luo Y T, Yu Q M, Zhang Z Y, Zhang S, Liu Z B, Ren W C, Cheng H M, Li J, Liu B L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm-2[J]. Adv. Funct. Mater., 2021, 31(21): 2010367.
doi: 10.1002/adfm.202010367 URL |
[47] |
Kosmala T, Baby A, Lunardon M, Perilli D, Liu H, Durante C, Di Valentin C, Agnoli S, Granozzi G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal-graphene interfaces[J]. Nat. Catal., 2021, 4(10): 850-859.
doi: 10.1038/s41929-021-00682-2 URL |
[48] |
Shao M F, Zhang R K, Li Z H, Wei M, Evans D G, Duan X. Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications[J]. Chem. Commun., 2015, 51(88): 15880-15893.
doi: 10.1039/C5CC07296D URL |
[49] |
Li J M, Jiang S, Shao M F, Wei M. Host-guest engineering of layered double hydroxides towards efficient oxygen evolution reaction: recent advances and perspectives[J]. Catalysts, 2018, 8(5): 214.
doi: 10.3390/catal8050214 URL |
[50] |
Wang D S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting[J]. Chinese J Catal., 2022, 43(6): 1380-1398.
doi: 10.1016/S1872-2067(21)63987-6 URL |
[51] |
Zhou L, Shao M F, Wei M, Duan X. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives[J]. J. Energy Chem., 2017, 26(6): 1094-1106.
doi: 10.1016/j.jechem.2017.09.015 URL |
[52] |
Zhang L H, Chuai H Y, Liu H, Fan Q, Kuang S Y, Zhang S, Ma X B. Facet dependent oxygen evolution activity of spinel cobalt oxides[J]. J. Electrochem., 2022, 28(2): 2108481.
doi: 10.13208/j.electrochem.210848 |
[53] |
Liu Y K, Jiang S, Li S J, Zhou L, Li Z H, Li J M, Shao M F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting[J]. Appl. Catal. B Environ., 2019, 247: 107-114.
doi: 10.1016/j.apcatb.2019.01.094 URL |
[54] |
Zhou L, Shao M F, Li J B, Jiang S, Wei M, Duan X. Two-dimensional ultrathin arrays of CoP: electronic modulation toward high performance overall water splitting[J]. Nano Energy, 2017, 41: 583-590.
doi: 10.1016/j.nanoen.2017.10.009 URL |
[55] |
Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, Evans D G, Duan X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions[J]. Chem. Sci., 2015, 6(11): 6624-6631.
doi: 10.1039/c5sc02417j pmid: 29435211 |
[56] |
Li Z H, Shao M F, Zhou L, Zhang R K, Zhang C, Wei M, Evans D G, Duan X. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction[J]. Adv. Mater., 2016, 28(12): 2337-2344.
doi: 10.1002/adma.201505086 URL |
[57] | Song Y J, Li Z H, Fan K, Ren Z, Xie W F, Yang Y S, Shao M F, Wei M. Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation[J]. Appl. Catal. B Environ., 2021, 299: 120699. |
[58] |
Gao R, Zhu J, Yan D P. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review[J]. Nanoscale, 2021, 13(32): 13593-13603.
doi: 10.1039/d1nr03409j pmid: 34477633 |
[59] |
Zhou L, Jiang S, Liu Y K, Shao M F, Wei M, Duan X. Ultrathin CoNiP@layered double hydroxides core-shell nanosheets arrays for largely enhanced overall water splitting[J]. ACS Appl. Energy Mater., 2018, 1(2): 623-631.
doi: 10.1021/acsaem.7b00151 URL |
[60] |
Li A, Zhang L, Wang F Z, Zhang L, Li L, Chen H M, Wei Z D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting[J]. Appl. Catal. B Environ., 2022, 310: 121353.
doi: 10.1016/j.apcatb.2022.121353 URL |
[61] |
Wang Z J, Guo P, Cao S F, Chen H Y, Zhou S N, Liu H H, Wang H W, Zhang J B, Liu S Y, Wei S X, Sun D F, Lu X Q. Contemporaneous inverse manipulation of the valence configuration to preferred CO2+ and Ni3+ for enhanced overall water electrocatalysis[J]. Appl. Catal. B Environ., 2021, 284: 119725.
doi: 10.1016/j.apcatb.2020.119725 URL |
[62] |
Zhao Y, Gao Y X, Chen Z, Li Z J, Ma T Y, Wu Z X, Wang L. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting[J]. Appl. Catal. B Environ., 2021, 297: 120395.
doi: 10.1016/j.apcatb.2021.120395 URL |
[63] |
Zhang L, Wang X Y, Li A, Zheng X Q, Peng L S, Huang J W, Deng Z H, Chen H M, Wei Z D. Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts[J]. J. Mater. Chem. A, 2019, 7(29): 17529-17535.
doi: 10.1039/c9ta05282h |
[64] |
Chen L, Wang Y P, Zhao X, Wang Y C, Li Q, Wang Q C, Tang Y G, Lei Y P. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting[J]. J. Mater. Sci. Technol., 2022, 110: 128-135.
doi: 10.1016/j.jmst.2021.08.083 |
[65] | Liu H H, Yan Z H, Chen X, Li J H, Zhang L, Liu F M, Fan G L, Cheng F Y. Electrodeposition of Pt-decorated Ni(OH)2/CeO2 hybrid as superior bifunctional electrocatalyst for water splitting[J]. Research, 2020, 2020: 9068270. |
[66] |
Xie W F, Song Y K, Li S J, Shao M F, Wei M. Integrated nanostructural electrodes based on layered double hydroxides[J]. Energy Environ. Mater., 2019, 2(3): 158-171.
doi: 10.1002/eem2.12033 URL |
[67] |
Xie W F, Li H, Cui G Q, Li J B, Song Y K, Li S J, Zhang X, Lee J Y, Shao M F, Wei M. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction[J]. Angew. Chem. Int. Ed., 2021, 60(13): 7382-7388.
doi: 10.1002/anie.202014655 URL |
[68] |
Li J Z, Li H, Xie W F, Li S J, Song Y K, Fan K, Lee J Y, Shao M F. Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction[J]. Small Methods, 2022, 6(1): 2101324.
doi: 10.1002/smtd.202101324 URL |
[69] |
Li Z H, Cui J Y, Liu Y K, Li J B, Liu K, Shao M F. Electrosynthesis of well-defined metal-organic framework films and the carbon nanotube network derived from them toward electrocatalytic applications[J]. ACS Appl. Mater. Interfaces, 2018, 10(40): 34494-34501.
doi: 10.1021/acsami.8b12854 URL |
[70] |
Li S J, Xie W F, Song Y K, Shao M F. Layered double hydroxide@polydopamine core-shell nanosheet arrays-derived bifunctional electrocatalyst for efficient, flexible, all-solid-state zinc-air battery[J]. ACS Sustainable Chem. Eng., 2019, 8(1): 452-459.
doi: 10.1021/acssuschemeng.9b05754 URL |
[71] | Song Y K, Xie W F, Shao M F. Recent advances in integrated electrode for electrocatalytic carbon dioxide reduction[J]. Acta Phys. -Chim. Sin., 2021, 38(6): 2101028. |
[72] |
Li S J, Xie W F, Song Y K, Li Y, Song Y J, Li J Z, Shao M F. Integrated CoPt electrocatalyst combined with upgrading anodic reaction to boost hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 437: 135473.
doi: 10.1016/j.cej.2022.135473 URL |
[73] |
Phillips R, Dunnill C W. Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas[J]. RSC Adv., 2016, 6(102): 100643-100651.
doi: 10.1039/C6RA22242K URL |
[74] |
Haug P, Kreitz B, Koj M, Turek T. Process modelling of an alkaline water electrolyzer[J]. Int. J. Hydrog. Energy, 2017, 42(24): 15689-15707.
doi: 10.1016/j.ijhydene.2017.05.031 URL |
[75] | Song Y J, Ji K Y, Duan H H, Shao M F. Hydrogen production coupled with water and organic oxidation based on layered double hydroxides[J]. Exploration, 2021, 1(3): 210050. |
[76] |
Li Y, Wei X F, Chen L S, Shi J L. Electrocatalytic hydrogen production trilogy[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19550-19571.
doi: 10.1002/anie.202009854 URL |
[77] |
Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angew. Chem. Int. Ed., 2021, 60(36): 19572-19590.
doi: 10.1002/anie.202101522 pmid: 33606339 |
[78] | Lu Y X, Liu T Y, Dong C L, Huang Y C, Li Y F, Chen J, Zou Y Q, Wang S Y. Tuning the selective adsorption site of biomass on Co3O4 by Ir single atoms for electrosynthesis[J]. Adv. Mater., 2021, 33(8): e2007056. |
[79] |
Song Y J, Jiang S, He Y H, Wu Y, Wan X, Xie W, Wang J J, Li Z H, Duan H B, Shao M F. Metal vacancy-enriched layered double hydroxide for biomass molecule electrooxidation coupled with hydrogen production[J]. Fundam. Res., 2022: DOI: 10.1016/j.fmre.2022.1005.1023.
doi: 10.1016/j.fmre.2022.1005.1023 |
[80] |
Song Y K, Xie W F, Song Y J, Li H, Li S J, Jiang S, Lee J Y, Shao M F. Bifunctional integrated electrode for high-efficient hydrogen production coupled with 5-hydroxymethylfurfural oxidation[J]. Appl. Catal. B Environ., 2022, 312: 121400.
doi: 10.1016/j.apcatb.2022.121400 URL |
[81] |
Li Z H, Yan Y F, Xu S M, Zhou H, Xu M, Ma L N, Shao M F, Kong X G, Wang B, Zheng L R, Duan H H. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nat. Commun., 2022, 13(1): 147.
doi: 10.1038/s41467-021-27806-3 URL |
[82] |
Zhou H, Li Z H, Xu S M, Lu L L, Xu M, Ji K Y, Ge R X, Yan Y F, Ma L N, Kong X G, Zheng L R, Duan H H. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)-C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst[J]. Angew. Chem. Int. Ed., 2021, 60(16): 8976-8982.
doi: 10.1002/anie.202015431 URL |
[83] |
Li X, Zhao L L, Yu J Y, Liu X Y, Zhang X L, Liu H, Zhou W J. Water splitting: from electrode to green energy system[J]. Nano-Micro Lett., 2020, 12(1): 131.
doi: 10.1007/s40820-020-00469-3 pmid: 34138146 |
[84] |
Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese J. Catal., 2018, 39(3): 390-394.
doi: 10.1016/S1872-2067(17)62949-8 URL |
[85] |
Wang Y, Sharma A, Duong T, Arandiyan H, Zhao T W, Zhang D D, Su Z, Garbrecht M, Beck F J, Karuturi S, Zhao C, Catchpole K. Direct solar hydrogen generation at 20% efficiency using low-cost materials[J]. Adv. Energy Mater., 2021, 11(34): 2101053.
doi: 10.1002/aenm.202101053 URL |
[86] |
Liang J, Han X, Qiu Y X, Fang Q Y, Zhang B Y, Wang W P, Zhang J, Ajayan P M, Lou J. A low-cost and high-efficiency integrated device toward solar-driven water splitting[J]. ACS Nano, 2020, 14(5): 5426-5434.
doi: 10.1021/acsnano.9b09053 pmid: 32348117 |
[87] | Wang L M, Zhang L L, Ma W, Wan H, Zhang X J, Zhang X, Jiang S Y, Zheng J Y, Zhou Z. In situ anchoring massive isolated Pt atoms at cationic vacancies of α-NixFe1-x(OH)2 to regulate the electronic structure for overall water splitting[J]. Adv. Funct. Mater., 2022: 2203342. |
[88] |
Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Gratzel M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts[J]. Science, 2014, 345(6204): 1593-1596.
doi: 10.1126/science.1258307 pmid: 25258076 |
[89] |
Fu H C, Varadhan P, Lin C H, He J H. Spontaneous solar water splitting with decoupling of light absorption and electrocatalysis using silicon back-buried junction[J]. Nat. Commun., 2020, 11(1): 3930.
doi: 10.1038/s41467-020-17660-0 URL |
[90] |
Sharma A, Duong T, Liu P, Soo J Z, Yan D, Zhang D D, Riaz A, Samundsett C, Shen H P, Yang C, Karuturi S K, Catchpole K, Beck F J. Direct solar to hydrogen conversion enabled by silicon photocathodes with carrier selective passivated contacts[J]. Sustain. Energ. Fuels, 2022, 6(2): 349-360.
doi: 10.1039/D1SE01260F URL |
[91] |
Park H, Park I J, Lee M G, Kwon K C, Hong S P, Kim D H, Lee S A, Lee T H, Kim C, Moon C W, Son D Y, Jung G H, Yang H S, Lee J R, Lee J, Park N G, Kim S Y, Kim J Y, Jang H W. Water splitting exceeding 17% solar-to-hydrogen conversion efficiency using solution-processed Ni-based electrocatalysts and perovskite/Si tandem solar cell[J]. ACS Appl. Mater. Interfaces, 2019, 11(37): 33835-33843.
doi: 10.1021/acsami.9b09344 URL |
[92] |
Karuturi S K, Shen H P, Sharma A, Beck F J, Varadhan P, Duong T, Narangari P R, Zhang D D, Wan Y M, He J H, Tan H H, Jagadish C, Catchpole K. Over 17% efficiency stand-alone solar water splitting enabled by perovskite-silicon tandem absorbers[J]. Adv. Energy Mater., 2020, 10(28): 2000772.
doi: 10.1002/aenm.202000772 URL |
[93] |
Gao J, Sahli F, Liu C J, Ren D, Guo X Y, Werner J, Jeangros Q, Zakeeruddin S M, Ballif C, Gratzel M, Luo J S. Solar water splitting with perovskite/silicon tandem cell and TiC-supported Pt nanocluster electrocatalyst[J]. Joule, 2019, 3(12): 2930-2941.
doi: 10.1016/j.joule.2019.10.002 URL |
[94] |
Sun P L, Zhou Y T, Li H Y, Zhang H, Feng L G, Cao Q E, Liu S X, Wagberg T, Hu G Z. Round-the-clock bifunctional honeycomb-like nitrogen-doped carbon-decorated Co2P/Mo2C-heterojunction electrocatalyst for direct water splitting with 18.1% STH efficiency[J]. Appl. Catal. B Environ., 2022, 310: 121354.
doi: 10.1016/j.apcatb.2022.121354 URL |
[95] |
Zhao L L, Yang Z Y, Cao Q, Yang L J, Zhang X F, Jia J, Sang Y H, Wu H J, Zhou W J, Liu H. An earth-abundant and multifunctional Ni nanosheets array as electrocatalysts and heat absorption layer integrated thermoelectric device for overall water splitting[J]. Nano Energy, 2019, 56: 563-570.
doi: 10.1016/j.nanoen.2018.11.035 URL |
[96] |
Zhang Y, Kumar S, Marken F, Krasny M, Roake E, Eslava S, Dunn S, Da Como E, Bowen C R. Pyro-electrolytic water splitting for hydrogen generation[J]. Nano Energy, 2019, 58: 183-191.
doi: 10.1016/j.nanoen.2019.01.030 |
[97] |
Ren X H, Fan H Q, Wang C, Ma J W, Li H, Zhang M C, Lei S H, Wang W J. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting[J]. Nano Energy, 2018, 50: 562-570.
doi: 10.1016/j.nanoen.2018.06.002 URL |
[98] |
Tang W, Han Y, Han C B, Gao C Z, Cao X, Wang Z L. Self-powered water splitting using flowing kinetic energy[J]. Adv. Mater., 2015, 27(2): 272-276.
doi: 10.1002/adma.201404071 URL |
[1] | 马海斌, 周晓延, 李嘉艺, 程洪飞, 马吉伟. 用于促进碱性介质中析氢反应动力学的异质结构电催化剂的合理设计[J]. 电化学(中英文), 2024, 30(1): 2305101-. |
[2] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[3] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[4] | 甘团杰, 武建平, 刘石, 区文俊, 凌彬, 康雄武. 低结晶度AuPt-Ru/CNTs合金异质结作为高效多功能电催化剂[J]. 电化学(中英文), 2022, 28(8): 2201241-. |
[5] | 张丽桦, 揣宏媛, 刘海, 范群, 况思宇, 张生, 马新宾. 尖晶石钴氧化物的晶面调控与析氧活性研究[J]. 电化学(中英文), 2022, 28(2): 2108481-. |
[6] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
[7] | 黄健航, 董晓丽, 郭昭薇, 马元元, 王艳荣, 王永刚. 基于有机物电极的电化学能量存储与转化[J]. 电化学(中英文), 2020, 26(4): 486-494. |
[8] | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229. |
[9] | 吴 芝, 孙 岚, 林昌健. 太阳能光催化制氢研究进展[J]. 电化学(中英文), 2019, 25(5): 529-552. |
[10] | 唐堂,江文杰,牛帅,胡劲松. 高性能析氧电催化剂的设计策略[J]. 电化学(中英文), 2018, 24(5): 409-426. |
[11] | 马元元,郭昭薇,王永刚,夏永姚. 电池电极反应的新应用:分步法电解制氢气[J]. 电化学(中英文), 2018, 24(5): 444-454. |
[12] | 冷文华. 结合光电化学和瞬态吸收光谱技术研究光电化学分解水载流子动力学[J]. 电化学(中英文), 2014, 20(4): 316-322. |
[13] | 程杰, 叶锋, 王同涛, 李晶晶, 王永亮, 王新东, . 泡沫镍载钌催化硼氢化钠水解制氢[J]. 电化学(中英文), 2008, 14(3): 269-272. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||