[1] |
Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
doi: 10.13208/j.electrochem.180855
URL
|
[2] |
Zhao G Q, Rui K, Dou S X, Sun W P. Heterostructures for electrochemical hydrogen evolution reaction: A review[J]. Adv. Funct. Mater., 2018, 28(43): 1803291.
doi: 10.1002/adfm.v28.43
URL
|
[3] |
Zou H H, Li W Q, Song C H, Cao L M, Zhang X F, Zhu X Y, Du Z Y, Zhang J, Zhong S L, He C T. Disclosing the active integration structure and robustness of a pseudo-tri-component electrocatalyst toward alkaline hydrogen evolution[J]. J. Energy Chem., 2022, 72: 210-216.
doi: 10.1016/j.jechem.2022.03.038
URL
|
[4] |
Wei Y, Soomro R A, Xie X Q, Xu B. Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes[J]. J. Energy Chem., 2021, 55: 244-255.
doi: 10.1016/j.jechem.2020.06.069
URL
|
[5] |
Wang X L, Cong Y Y, Qiu C X, Wang S J, Qin J Q, Song Y J. Core-shell structured Ru@PtRu nanoflower electrocatalysts toward alkaline hydrogen evolution reaction[J]. J. Electrochem., 2020, 26(6): 815-824.
|
[6] |
Zhang T J, Walsh A G, Yu J H, Zhang P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities[J]. Chem. Soc. Rev., 2021, 50(1): 569-588.
doi: 10.1039/d0cs00844c
pmid: 33170202
|
[7] |
Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, Sykes E C H. Single-atom alloy catalysis[J]. Chem. Rev., 2020, 120(21): 12044-12088.
doi: 10.1021/acs.chemrev.0c00078
URL
|
[8] |
Liu Y, Liu S L, Wang Y, Zhang Q H, Gu L, Zhao S C, Xu D D, Li Y F, Bao J C, Dai Z H. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2p-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance[J]. J. Am. Chem. Soc., 2018, 140(8): 2731-2734.
doi: 10.1021/jacs.7b12615
URL
|
[9] |
Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotech., 2017, 12(5): 441-446.
doi: 10.1038/nnano.2016.304
URL
|
[10] |
Wang X S, Zhu Y H, Vasileff A, Jiao Y, Chen S M, Song L, Zheng B, Zheng Y, Qiao S Z. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1198-1204.
doi: 10.1021/acsenergylett.8b00454
URL
|
[11] |
Wang C, Qi L M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting[J]. Angew. Chem. Int. Ed., 2020, 59(39): 17219-17224.
doi: 10.1002/anie.v59.39
URL
|
[12] |
Luo M, Cai J Y, Zou J S, Jiang Z, Wang G M, Kang X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947.
doi: 10.1039/D1TA03593B
URL
|
[13] |
Muleja A A, Mbianda X Y, Krause R W, Pillay K. Synthesis, characterization and thermal decomposition behaviour of triphenylphosphine-linked multiwalled carbon nanotubes[J]. Carbon, 2012, 50(8): 2741-2751.
doi: 10.1016/j.carbon.2012.02.033
URL
|
[14] |
Song H Y, Ma C L, Wang L, Zhu Z G. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: Characterization and applications[J]. Nanoscale, 2020, 12(37): 19284-19292.
doi: 10.1039/d0nr04060f
pmid: 32935692
|
[15] |
Chen C, Kang Y J, Huo Z Y, Zhu Z W, Huang W Y, Xin H L L, Snyder J D, Li D G, Herron J A, Mavrikakis M, Chi M F, More K L, Li Y D, Markovic N M, Somorjai G A, Yang P D, Stamenkovic V R. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343.
doi: 10.1126/science.1249061
pmid: 24578531
|
[16] |
Xie Y F, Cai J Y, Wu Y S, Zang Y P, Zheng X S, Ye J, Cui P X, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M, Qian Y T. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning[J]. Adv. Mater., 2019, 31(16): 1807780.
doi: 10.1002/adma.v31.16
URL
|
[17] |
Zhang Z C, Liu G G, Cui X Y, Chen B, Zhu Y H, Gong Y, Saleem F, Xi S B, Du Y H, Borgna A, Lai Z C, Zhang Q H, Li B, Zong Y, Han Y, Gu L, Zhang H. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution[J]. Adv. Mater., 2018, 30(30): 1801741.
doi: 10.1002/adma.v30.30
URL
|
[18] |
Fan J C, Qi K, Zhang L, Zhang H Y, Yu S S, Cui X Q. Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation[J]. ACS Appl. Mater. Inter., 2017, 9(21): 18008-18014.
doi: 10.1021/acsami.7b05290
URL
|
[19] |
Zhao Z P, Liu H T, Gao W P, Xue W, Liu Z Y, Huang J, Pan X Q, Huang Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(29): 9046-9050.
doi: 10.1021/jacs.8b04770
pmid: 29983055
|
[20] |
Cao Z M, Chen Q L, Zhang J W, Li H Q, Jiang Y Q, Shen S Y, Fu G, Lu B A, Xie Z X, Zheng L S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction[J]. Nat. Commun., 2017, 8: 15131.
doi: 10.1038/ncomms15131
pmid: 28436494
|
[21] |
Ding J B, Shao Q, Feng Y G, Huang X Q. Ruthenium-nickel sandwiched nanoplates for efficient water splitting electrocatalysis[J]. Nano Energy, 2018, 47: 1-7.
doi: 10.1016/j.nanoen.2018.02.017
URL
|
[22] |
Li K, Li Y, Wang Y M, Ge J J, Liu C P, Xing W. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon[J]. Energy Environ. Sci., 2018, 11(5): 1232-1239.
doi: 10.1039/C8EE00402A
URL
|
[23] |
Wu R, Xiao B, Gao Q, Zheng Y R, Zheng X S, Zhu J F, Gao M R, Yu S H. A janus nickel cobalt phosphide catalyst for high-efficiency neutral-pH water splitting[J]. Angew. Chem. Int. Ed., 2018, 57(47): 15445-15449.
doi: 10.1002/anie.201808929
pmid: 30281194
|
[24] |
Wan R D, Luo M, Wen J B, Liu S L, Kang X W, Tian Y. Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation[J]. J. Energy Chem., 2022, 69: 44-53.
doi: 10.1016/j.jechem.2021.12.045
URL
|
[25] |
Qin X P, Zhu S Q, Zhang L L, Sun S H, Shao M H. Theoretical studies of metal-N-C for oxygen reduction and hydrogen evolution reactions in acid and alkaline solutions[J]. J. Electrochem., 2021, 27(2): 185-194.
|