[1] Larsen L H, Damgaard L R, Kj?r T, et al. Fast responding biosensor for on-line determination of nitrate/nitrite in activated sludge[J]. Water Research, 2000, 34(9): 2463-2468.[2] Silva S D, Cosnier S, Almeida M G, et al. An efficient poly(pyrrole-viologen)-nitrite reductase biosensor for the mediated detection of nitrite[J]. Electrochemistry Communications, 2004, 6(4): 404-408.[3] Chen H, Mousty C, Cosnier S, et al. Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH[J]. Electrochemistry Communications, 2007, 9(9): 2240-2245.[4] Gu G Z (谷广哲), Dong S Y (董社英), Huang T L (黄廷林), et al. NaNO2 biosensor based on hollow nano-nickel oxide microsphere and ionic liquid composite film immobilizing hemoglobin[J]. Chemical Journal of Chinese Universities (高等学校化学学报), 2012, 33(9): 1926-1931.[5] Li Z (李正), Ma Y T (马玉婷), Chen Y (陈翊), et al. Electrocatalytic properties of Au core-Pt shell nanoparticle-glassy carbon modified electrode for nitrite[J]. Chinese Journal of Spectroscopy Laboratory (光谱实验室), 2011, 28(5): 2383-2386.[6] Radhakrishnan S, Krishnamoorthy K, Sekar C, et al. A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets[J]. Applied Catalysis B: Environmental, 2014, 148: 22-28.[7] Li Y H, Wang H B, Liu X S, et al. Nonenzymatic nitrite sensor based on a titanium dioxide nanoparticles/ionic liquid composite electrode[J]. Journal of Electroanalytical Chemistry, 2014, 719: 35-40.[8] Liu W (刘文), Wei Z P (魏志鹏), Zheng L Z (郑龙珍). Research progress of the catalytic property of Fe3O4 magnetic nanoparticles[J]. Chinese Journal of Spectroscopy Laboratory (光谱实验室), 2012, 29(4): 1956-1959.[9] Ma M,Xie J,Zhang Y,et al. Fe3O4@Pt nanoparticles with enhanced peroxidase-like catalytic activity[J]. Materials Letters, 2013, 105: 36-39.[10] Gao M J (高敏江), Li S Q (李素芹), Wang X D (王习东), et al. Study on photo-degradation of degradation of organic contaminants in coking wastewater catalyzed by TiO2/Fe3O4 composite particle[J]. Technology of Water Treatment (水处理技术), 2010, 36(9): 73-77.[11] Wei Y, Yin G F, Ma C Y, et al. Synthesis and cellular compatibility of biomineralized Fe3O4 nanoparticles in tumor cells targeting peptides[J]. Colloids and Surfaces B: Biointerfaces, 2013, 107: 180-188.[12] Cheng G F (程圭芳), Huang C H (黄翠华), Zhao J (赵洁), et al. A novel electrochemical biosensor for deoxyribonucleic acid detection based on magnetite nanoparticles[J]. Chinese Journal of Analytical Chemistry (分析化学研究报告), 2009, 37(2): 169-173.[13] Liu B (刘冰), Wang D P (王德平), Huang W C (黄文旵), et al. Preparation of core-shell SiO2/Fe3O4 nanocomposite particles via sol-gel approach[J]. Journal of Inorganic Materials (无机材料学报), 2008, 23(1): 33-38.[14] Li J (李佳), Xu J R (徐金瑞), Sun X Y (孙向英). Determination of trace nitrite with covalent-bond chitosan modified electrode[J]. Chinese Journal of Analytical Chemistry (分析化学研究简报), 2002, 30(2): 206-209.[15] Mani V,?Periasamy A P, Chen S M. Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode[J]. Electrochemistry Communications, 2012, 17: 75-78.[16] Li S J, Zhao G Y, Zhang R X, et al. A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene[J]. Microchim Acta, 2013, 180(9/10): 821-827.[17] Yu C M, Wang Y D, Wang L, et al. Nanostructured biosensors built with layer-by-layer electrostatic assembly of hemoglobin and Fe3O4@Pt nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 231-237. |