电化学(中英文) ›› 2022, Vol. 28 ›› Issue (4): 2103071. doi: 10.13208/j.electrochem.210307
收稿日期:
2021-03-09
修回日期:
2021-05-06
出版日期:
2022-04-28
发布日期:
2021-05-26
基金资助:
Hao Wang, Xiao-Zhou Cao*(), Xiang-Xin Xue
Received:
2021-03-09
Revised:
2021-05-06
Published:
2022-04-28
Online:
2021-05-26
Contact:
*Tel: (86)13889113893, E-mail: caoxz@smm.neu.edu.cn
摘要:
通过恒电位电沉积法在氯化胆碱-乙二醇(ChCl-EG)低共熔溶剂中成功制备了锑镀层。采用FTIR红外光谱和拉曼光谱分析了ChCl-EG低共熔溶剂内部的微观结构,采用循环伏安法研究了扫速、温度、浓度对Sb3+在ChCl-EG中的伏安行为的影响以及电化学还原规律。同时,采用计时电流法研究了Sb(III)在ChCl-EG中的电化学电结晶规律,采用SEM和XRD对电沉积产物进行表征。研究结果表明,ChCl-EG中存在大量氢键,并且Sb(III)的加入不会破坏ChCl-EG原有的分子结构;温度升高和增大浓度时Sb的沉积所需的过电位减小;343 K时Sb在钨电极上的成核方式为三维瞬时成核,施加沉积电位是Sb(III)发生电还原的主要驱动力,随着施加沉积电位的变化,电沉积产物的形貌发生变化。
王昊, 曹晓舟, 薛向欣. 锑在氯化胆碱-乙二醇低共熔溶剂中的电沉积研究[J]. 电化学(中英文), 2022, 28(4): 2103071.
Hao Wang, Xiao-Zhou Cao, Xiang-Xin Xue. Study on Electrodeposition of Antimony in Choline Chloride-Ethylene Glycol Eutectic Solvent[J]. Journal of Electrochemistry, 2022, 28(4): 2103071.
[1] | Xue F L(薛福连). Antimony with a wide range of uses[J]. Metal World(金属世界), 2007, 5: 67-67. |
[2] | Diao J J(刁静君), Wang W(王为). Research progress of semi-metals and semi-conductors electrodeposited in ionic liquid[J]. Mater. Prot.(材料保护), 2013, 46(4): 40-43. |
[3] | Su B(苏波), Li J(李坚), Hua Y X(华一新), Xu C Y(徐存英), Li Y(李艳), Ai G H(艾刚华). Electrochemistry of Sn2+/Sn in choline chloride-glycol deep eutectic solvents[J]. J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.)(中南大学学报(自然科学版)), 2018, 49(9): 2129-2136. |
[4] |
Ibrahim R K, Hayyan M, AlSaadi M A, Ibrahim S, Hayyan A, Hashim M A. Physical properties of ethylene glycol-based deep eutectic solvents[J]. J. Mol. Liq., 2019, 276: 794-800.
doi: 10.1016/j.molliq.2018.12.032 URL |
[5] |
Yang H X, Reddy R G. Electrochemical deposition of zinc from zinc oxide in 2: 1 urea/choline chloride ionic liquid[J]. Electrochim. Acta., 2014, 147: 513-519.
doi: 10.1016/j.electacta.2014.09.137 URL |
[6] |
Vieira L, Schennach R, Gollas B. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents[J]. Electrochim. Acta., 2016, 197: 344-352.
doi: 10.1016/j.electacta.2015.11.030 URL |
[7] | Wang H Y(王怀有), Jing Y(景燕), Lv X H(吕学海), Yin G(尹刚), Wang X H(王小华), Yao Y(姚颖), Jia Y Z(贾永忠). Structure and physico-chemical properties of ionic liquid containing magnesium chloride[J]. J. Chem. Ind. Eng.(化工学报), 2011, 62(S2):21-25. |
[8] |
Tenhunen T M, Lewandowska A E, Orelma H, Johansson L S, Virtanen T, Harlin A, Österberg M, Eichhorn S J, Tammelin T. Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea[J]. Cellulose, 2018, 25(1): 137-150.
doi: 10.1007/s10570-017-1587-0 URL |
[9] | Miller M A, Wainright J S, Savinell R F. Iron electrodeposition in a deep eutectic solvent for flow batteries[J]. J. Ele-ctrochem. Soc., 2017, 164(4): A796-A803. |
[10] |
Chang P, Chen Z, Zhang Y H, Liu Y. Direct measurement of aerosol pH in individual malonic acid and citric acid droplets under different relative humidity conditions via Raman spectroscopy[J]. Chemosphere, 2020, 241: 124960.
doi: 10.1016/j.chemosphere.2019.124960 URL |
[11] | Haight J G P. Polarography of tripositive antimony and arsenic. Cathodic reduction of antimonous in strong hydrochloric acid and anodic oxidation of arsenite and stibnite in strong sodium hydroxide[J]. J. Am. Chem. Soc., 1953, 75 (15): 3848-3851. |
[12] |
Fung K W, Begun G M, Mamantov G. Raman spectra of molten bismuth trichloride and antimony trichloride and of their mixtures with potassium chloride or aluminum trichloride[J]. Inorg. Chem., 1973, 12 (1): 53-57.
doi: 10.1021/ic50119a014 URL |
[13] |
Habboush D A, Osteryoung R A. Electrochemical studies of antimony (III) and antimony (V) in molten mixtures of aluminum chloride and butylpyridinium chloride[J]. Inorg. Chem., 1984, 23(12): 1726-1734.
doi: 10.1021/ic00180a018 URL |
[14] | Ali M R, Rahman M Z, Sankarsaha S. Electrodeposition of copper from a choline chloride based ionic liquid[J]. J. Electrochem., 2014, 20(2): 139-145. |
[15] |
Catrangiu A S, Sin I, Prioteasa P, Cotarta A, Cojocaru A, Anicai L, Visan T. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids[J]. Thin Solid Films, 2016, 611: 88-100.
doi: 10.1016/j.tsf.2016.04.030 URL |
[16] |
Hinatsu J T, Foulkes F R. Electrochemical kinetic parameters for the cathodic deposition of copper from dilute aqueous acid sulfate solutions[J]. Can. J. Chem. Eng., 1991, 69(2): 571-577.
doi: 10.1002/cjce.5450690224 URL |
[17] |
Nagaishi R, Arisaka M, Kimura T, Kitatsuji Y. Spectroscopic and electrochemical properties of europium (III) ion in hydrophobic ionic liquids under controlled condition of water content[J]. J. Alloys. Compd., 2007, 431(1-2): 221-225.
doi: 10.1016/j.jallcom.2006.05.048 URL |
[18] | Manh T L, Arce-Estrada E M, Romero-Romo M, Mejía-Caballero I, Aldana-González J, Palomar-Pardavé M. On wetting angles and nucleation energies during the electrochemical nucleation of cobalt onto glassy carbon from a deep eutectic solvent[J]. J. Electrochem. Soc., 2017, 164(12): D694-D699. |
[19] |
Bu J J, Ru J J, Wang Z W, Hua Y X, Xu C Y, Zhang Y, Wang Y. Controllable preparation of antimony powders by electrodeposition in choline chloride-ethylene glycol[J]. Adv. Powder Technol., 2019, 30(12): 2859-2867.
doi: 10.1016/j.apt.2019.06.027 URL |
[20] | Hsieh Y T, Chen Y C, Sun I W. 1-Butyl-1-Methylpyrrolidinium dicyanamide room temperature ionic liquid for electrodeposition of antimony[J]. J. Electrochem. Soc., 2016, 163(5): D188-D193. |
[21] | Hsieh L Y, Fong J D, Hsieh Y Y, Wang S P, Sun I W. Electrodeposition of bismuth in a choline chloride/ethylene glycol deep eutectic solvent under ambient atmosphere[J]. J. Electrochem. Soc., 2018, 165(9): D331-D338. |
[22] |
Jerkiewicz G, Perreault F, Radovic-Hrapovic Z. Effect of temperature variation on the under-potential deposition of copper on Pt(111) in aqueous H2SO4[J]. J. Phys. Chem. C, 2009, 113(28): 12309-12316.
doi: 10.1021/jp900478u URL |
[23] |
Lovric M, Hermes M, Scholz F. The effect of the electrolyte concentration in the solution on the voltammetric response of insertion electrodes[J]. J. Solid State Electr., 1998, 2(6): 401-404.
doi: 10.1007/s100080050117 URL |
[24] |
Kahoul A, Azizi F, Bouaoud M. Effect of citrate additive on the electrodeposition and corrosion behaviour of Zn-Co alloy[J]. Trans. IMF, 2017, 95(2): 106-113.
doi: 10.1080/00202967.2017.1265766 URL |
[25] |
Zhou L P, Dai Y T, Zhang H, Jia Y R, Zhang J, Li C X. Nucleation and growth of bismuth electrodeposition from alkaline electrolyte[J]. B. Korean Chem. Soc., 2012, 33(5): 1541-1546.
doi: 10.5012/bkcs.2012.33.5.1541 URL |
[26] |
Lin Y F, Sun I W. Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt[J]. Electrochim. Acta, 1999, 44(16): 2771-2777.
doi: 10.1016/S0013-4686(99)00003-1 URL |
[27] |
Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochim. Acta, 1983, 28(7): 879-889.
doi: 10.1016/0013-4686(83)85163-9 URL |
[28] |
Tamburri E, Angjellari M, Tomellini M, Gay S, Reina G, Lavecchia T, Barbini P, Pasquali M, Orlanducci S. Electrochemical growth of nickel nanoparticles on carbon nanotubes fibers: Kinetic modeling and implications for an easy to handle platform for gas sensing device[J]. Electrochim. Acta, 2015, 157: 115-124.
doi: 10.1016/j.electacta.2015.01.050 URL |
[29] |
Mosby J M, Prieto A L. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes[J]. J. Am. Chem. Soc., 2008, 130(32): 10656-10661.
doi: 10.1021/ja801745n URL |
[30] |
Nam D H, Hong K S, Lim S J, Kwon H S. Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries[J]. J. Power Sources, 2014, 247: 423-427.
doi: 10.1016/j.jpowsour.2013.08.095 URL |
[31] |
Kim R H, Kim K, Lim S J, Nam D H, Han D, Kwon H. Microstructure evolution of novel Sn islands prepared by electrodeposition as anode materials for lithium rechargeable batteries[J]. RSC Adv., 2017, 7(48): 30428-30432.
doi: 10.1039/C7RA04959E URL |
[1] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[2] | 张俊明, 张小杰, 陈瑶, 房英健, 樊友军, 贾建峰. 低共熔溶剂辅助合成新型的网状纳米结构用于加速甲酸电氧化[J]. 电化学(中英文), 2023, 29(5): 2206231-. |
[3] | 杨家强, 金磊, 李威青, 王赵云, 杨防祖, 詹东平, 田中群. 亚硫酸盐无氰电沉积金新工艺及机制[J]. 电化学(中英文), 2022, 28(7): 2213005-. |
[4] | 孙云娜, 吴永进, 谢东东, 蔡涵, 王艳, 丁桂甫. 硅通孔内铜电沉积填充机理研究进展[J]. 电化学(中英文), 2022, 28(7): 2213001-. |
[5] | 黄葵, 黄容姣, 刘素琴, 何震. 电子功能外延薄膜的电沉积[J]. 电化学(中英文), 2022, 28(7): 2213006-. |
[6] | 倪修任, 张雅婷, 王翀, 洪延, 陈苑明, 苏元章, 何为, 陈先明, 黄本霞, 续振林, 李毅峰, 李能彬, 杜永杰. 电沉积纳米锥镍的生长机理及其性能的研究[J]. 电化学(中英文), 2022, 28(7): 2213008-. |
[7] | 魏丽君, 周紫晗, 吴蕴雯, 李明, 王溯. 芯片钴互连及其超填充电镀技术的研究进展[J]. 电化学(中英文), 2022, 28(6): 2104431-. |
[8] | 缪桦, 李明瑞, 邹文中, 周国云, 王守绪, 叶晓菁, 朱凯. Sn-Ag-Cu三元合金焊料电沉积中添加剂的影响研究[J]. 电化学(中英文), 2022, 28(6): 2104411-. |
[9] | 战充波, 张润佳, 付旭, 孙海静, 周欣, 王保杰, 孙杰. 氯离子对ChCl-Urea低共熔溶剂中银电沉积的电化学行为影响[J]. 电化学(中英文), 2022, 28(5): 2111151-. |
[10] | 李江, 李作鹏, 白云峰, 罗宿星, 郭永, 鲍雅妍, 李容, 刘海燕, 冯锋. 一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用[J]. 电化学(中英文), 2022, 28(1): 2104211-. |
[11] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[12] | 刘双娟, 王海静, 郭靖, 王鹏程, 周昊, 孟才, 郭汉杰. 电沉积法制备石墨烯纸-金属复合材料的初步研究[J]. 电化学(中英文), 2021, 27(4): 396-404. |
[13] | Dylan Siltamaki, 陈帅, Farnood Pakravan, Jacek Lipkowski, 陈爱成. 纳米晶枝CuAu 合金催化剂对二氧化碳电催化还原性能的研究[J]. 电化学(中英文), 2021, 27(3): 278-290. |
[14] | 吴丽文, 王玮, 黄逸凡. 应用镍超微电极的电化学表面增强拉曼光谱技术研究[J]. 电化学(中英文), 2021, 27(2): 208-215. |
[15] | 吴丹丹, 吴旭. 钛基氧化铱电极电沉积制备技术研究进展[J]. 电化学(中英文), 2021, 27(1): 35-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||