[1] |
Chen Y X (陈艳霞), Huang J (黄俊), Zhan D P (詹东平). Encouraging more frogs in electrochemistry[J]. J. Electrochem.(电化学), 2020, 26(1): 1-2.
|
[2] |
He F, Chen W, Chen J Q, Zhen E F, Cai J, Chen Y X. The effect of water on the quantification of volatile species by differential electrochemical mass spectrometry[J]. Anal. Chem., 2021, 93(13): 5547-5555.
doi: 10.1021/acs.analchem.1c00116
URL
|
[3] |
Vliet D, Strmcnik D S, Chao W, Stamenkovic V R, Markovic N M, Koper M. On the importance of correcting for the uncompensated ohmic resistance in model experiments of the oxygen reduction reaction[J]. J. Electroanal. Chem., 2010, 647(1): 29-34.
doi: 10.1016/j.jelechem.2010.05.016
URL
|
[4] |
Bauer H, Foo D. Second-harmonic alternating current polarography[J]. Aust. J. Chem., 1966, 19(7): 1103-1115.
doi: 10.1071/CH9661103
URL
|
[5] |
Milner D F, Weaver M J. The influence of uncompensated solution resistance on the determination of standard electrochemical rate constants by cyclic voltammetry, and some comparisons with ac voltammetry[J]. Anal. Chim. Acta, 1987, 198: 245-257.
doi: 10.1016/S0003-2670(00)85025-4
URL
|
[6] |
Liao L W (廖玲文). Methodology and electrocatalysts for oxygen reduction reaction[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2013.
|
[7] |
Britz D. iR elimination in electrochemical cells[J]. J. Electroanal. Chem. Interf. Electrochem., 1978, 88(3): 309-352.
doi: 10.1016/S0022-0728(78)80122-3
URL
|
[8] |
Oldham K. The effect of uncompensated resistance on the potential-step method of investigating electrochemical kinetics[J]. J. Electroanal. Chem., 1966, 11(3): 171-187.
|
[9] |
Newman J. Current distribution on a rotating disk below the limiting current[J]. J. Electrochem. Soc., 1966, 113(12): 1235-1241.
doi: 10.1149/1.2423795
URL
|
[10] |
Piontelli R, Bianchi G, Bertocci U, Guerci C, Rivolta B. Meβmethoden der Polarisationsspannungen II[J]. Z. Elektrochem., 1954, 58(1): 54-64.
|
[11] |
Bockris J M, Azzam A. The kinetics of the hydrogen evolution reaction at high current densities[J]. Trans. Faraday Sot., 1952, 48: 145-160.
|
[12] |
Montella C. Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. Influence of charge transfer kinetics and ohmic potential drop[J]. J. Electroanal. Chem., 2002, 518(2): 61-83.
doi: 10.1016/S0022-0728(01)00691-X
URL
|
[13] |
Liu X, Cui S S, Qian M M, Sun Z J, Du P W. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions[J]. Chem. Commun., 2016, 52(32): 5546-5549.
doi: 10.1039/C6CC00526H
URL
|
[14] |
Chan S H, Chen X J, Khor K A. Reliability and accuracy of measured overpotential in a three-electrode fuel cell system[J]. J. Appl. Electrochem., 2001, 31(10): 1163-1170.
doi: 10.1023/A:1012232301349
URL
|
[15] |
Roullier L, Laviron E. Effect of uncompensated ohmic drop in surface linear potential sweep voltammetry: Application to the determination of surface rate constants[J]. J. Electroanal. Chem. Interf. Electrochem., 1983, 157(2): 193-203.
|
[16] |
Mirĉeski V, Lovric M. Ohmic drop effects in square-wave voltammetry[J]. J. Electroanal. Chem., 2001, 497(1-2): 114-124.
doi: 10.1016/S0022-0728(00)00464-2
URL
|
[17] |
Juárez A, Baruzzi A, Yudi L. Ohmic drop effects in square-wave voltammetry response for an ion transfer process at a liquid-liquid interface[J]. J. Electroanal. Chem., 2005, 577(2): 281-286.
doi: 10.1016/j.jelechem.2004.12.026
URL
|
[18] |
Nicholson R S, Shain I. Correction. Theory of stationary electrode polarography[J]. Anal. Chem., 1964, 36(7): 1212-1212.
doi: 10.1021/ac60213a053
URL
|
[19] |
Haber F. Über die elektrische Reduktion von Nichtelektrolyten[J]. Z. Phys. Chem., 1900, 32(1): 193-270.
|
[20] |
Tang Y L (唐延丽). Electrochemical impedance spectroscopy study of hydrogen and oxygen-containing species adsorption on Ir(111) electrode[D]. Hefei: University of Science and Technology of China(中国科学技术大学), 2020.
|
[21] |
Scribner L L. The measurement and correction of electrolyte resistance in electrochemical tests[M]. Philadelphia: ASTM, 1990: 180-191.
|
[22] |
Metrohm Instruments. Ohmic Drop: Part 1 - Basic Principles[EB/OL]. [2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-003?fromProductFinder=true.
|
[23] |
Cooper K R, Smith M. Electrical test methods for on-line fuel cell ohmic resistance measurement[J]. J. Power Sour-ces, 2006, 160(2): 1088-1095.
|
[24] |
Oelβner W, Berthold F, Guth U. The iR drop-well-known but often underestimated in electrochemical polarization measurements and corrosion testing[J]. Mater. Corros., 2006, 57(6): 455-466.
|
[25] |
Booman G, Holbrook W. Electroanalytical controlled-potential instrumentation[J]. Anal. Chem., 1963, 35(12): 1793-1809.
doi: 10.1021/ac60205a008
URL
|
[26] |
Gamry Instruments. Understanding ir compensation[EB/OL]. [2021-03-18]. https://cn.gamry.com/application-notes-3/instrumentation/understanding-ir-compensation/.
|
[27] |
Metrohm Instruments. Ohmic Drop: Part 2-Measurement [EB/OL]. [2021-03-18]. https://www.metrohm.com/zh-cn/applications/AN-EC-004?fromProductFinder=true.
|
[28] |
Yamagishi H. Automatic compensation of the IR drop in three-electrode systems by use of an electronic unit[J]. J. Electroanal. Chem., 1992, 326(1-2): 129-137.
doi: 10.1016/0022-0728(92)80508-2
URL
|
[29] |
Yarnitzky C, Friedman Y. Dynamic compensation of the over all and uncompensated cell resistance in a two-or three-electrode system. Steady state techniques[J]. Anal. Chem., 1975, 47(6): 876-880.
doi: 10.1021/ac60356a050
URL
|
[30] |
Guo Z Y, Lin X Q. Ultrafast cyclic voltammetry at scan rates of up to 3 MV s-1 through a single-opamp circuit with positive feedback compensation of ohmic drop[J]. J. Electroanal. Chem., 2004, 568: 45-53.
doi: 10.1016/j.jelechem.2004.01.005
URL
|
[31] |
Britz D. 100% ir compensation by damped positive feedback[J]. Electrochim. Acta, 1980, 25(11): 1449-1452.
doi: 10.1016/0013-4686(80)87160-X
URL
|
[32] |
Chen G, Xie J J, Zhang Z H, Meng W Q, Zhang C F, Kang K, Wu Y B, Guo Z Y. A portable digital-control electrochemical system with automatic ohmic drop compensation for fast scan voltammetry and its application to ultrasensitive detection of chromium (III)[J]. Sens. Actuators B Chem., 2019, 301: 127135.
doi: 10.1016/j.snb.2019.127135
URL
|
[33] |
Bard A J, Faulkner L R. Electrochemical methods: fundamentals and applications[M]. New York: John Wiley & Sons, 2001: 632-657.
|
[34] |
Jia Z (贾铮), Dai C S (戴长松), Chen L (陈玲). Electrochemical measurement methods[M]. Beijing: Chemical Industry Press(化学工业出版社), 2006: 193-196.
|
[35] |
Clavilier J, Faure R, Guinet G, Durand R. Preparation of monocrystalline Pt microelectrodes and electrtochemical study of the plane surfaces cut in the direction of the {111} and {110} planes[J]. J. Electroanal. Chem. Interf. Electrochem., 1980, 107(1): 205-209.
doi: 10.1016/S0022-0728(79)80022-4
URL
|
[36] |
Tang Y L (唐延丽), Chen W (陈微), Xu M L (许绵乐), Wei Z (韦臻), Cai J (蔡俊), Chen Y X (陈艳霞). Unravelling the hydrogen adsorption kinetics on Ir(111) electrode in acid solutions by impedance spectroscopy[J]. Chinese J. Chem. Phys.(化学物理学报), 2020, 33(4).
|
[37] |
He P, Faulkner L R. Intelligent, automatic compensation of solution resistance[J]. Anal. Chem., 1986, 58(3): 517-523.
doi: 10.1021/ac00294a004
URL
|
[38] |
Piontelli R, Bianchi G, Aletti R. Messungsmethoden der Polarisationsspannungen mittels Modellversuchen[J]. Z. Elektrochem, 1952, 56(2): 86-93.
|
[39] |
Piontelli R, Bertocci U, Bianchi G, Guerci C, Poli G. Meβmethoden der Polarisationsspannungen. III[J]. Z. Ele-ktrochem, 1954, 58(2): 86-95.
|
[40] |
Piontelli R, Rivolta B, Montanelli G. Meβmethoden der Polarisationsspannungen. IV[J]. Z. Elektrochem, 1955, 59(1): 64-67.
|
[41] |
Barnartt S. Primary current distribution around capillary tips used in the measurement of electrolytic polarization[J]. J. Electrochem. Soc., 1952, 99(12): 549.
doi: 10.1149/1.2779650
URL
|
[42] |
Barnartt S. Magnitude of IR-drop corrections in electrode polarization measurements made with a Luggin-Haber capillary[J]. J. Electrochem. Soc., 1961, 108(1): 102.
doi: 10.1149/1.2427994
URL
|
[43] |
Hayes M, Kuhn A, Patefield W. Techniques for the determination of ohmic drop in half-cells and full cells: A review[J]. J. Power Sources, 1977, 2(2): 121-136.
doi: 10.1016/0378-7753(77)80013-X
URL
|
[44] |
Müller E, Soller M. Die Rolle des Bleisuperoxyds als Anode bei der elektrolytischen Oxydation des Chromsulfates zu Chromsäure[J]. Z. Elektrochem, 1905, 11(48): 863-872.
|
[45] |
Milligan A. A method for measuring the potential of a current-carrying electrode[J]. Br. J. Appl. Phys., 1952, 3(12): 372.
doi: 10.1088/0508-3443/3/12/302
URL
|
[46] |
Pletcher D, Greff R, Peat R, Peter L, Robinson J. Insturmental methods in electrochemistry[M]. New York: Ellis Horwood Ltd, 2001: 368-370.
|
[47] |
Newman J. Ohmic potential measured by interrupter techniques[J]. J. Electrochem. Soc., 1970, 117(4): 507-508.
doi: 10.1149/1.2407553
URL
|
[48] |
Arjmand F, Zhang L F. Solution resistivity, ohmic drop and oxygen reduction rate at high temperature pressurized water[J]. Electrochim. Acta, 2016, 216: 438-448.
doi: 10.1016/j.electacta.2016.08.136
URL
|