电化学(中英文) ›› 2021, Vol. 27 ›› Issue (2): 216-226. doi: 10.13208/j.electrochem.201249
收稿日期:
2021-02-04
修回日期:
2021-03-17
出版日期:
2021-04-28
发布日期:
2021-03-20
通讯作者:
叶美丹
E-mail:mdye@xmu.edu.cn
Wei-Guo Wang, Tian Bai, Gao-Fei Xue, Mei-Dan Ye*()
Received:
2021-02-04
Revised:
2021-03-17
Published:
2021-04-28
Online:
2021-03-20
Contact:
Mei-Dan Ye
E-mail:mdye@xmu.edu.cn
摘要:
Spiro-OMeTAD是钙钛矿型太阳能电池中应用最广泛的空穴传输材料,它本身的空穴传输率很低,需要氧化之后才能满足高效率太阳能电池器件的要求。然而,Spiro-OMeTAD在空气中的氧化时间较长,同时空气中的水分会造成器件效率的下降以及器件质量不稳定等不良后果。基于此,我们通过一步法制备CsPbIBr2无机钙钛矿太阳能电池,并将旋涂了Spiro-OMeTAD层的器件放在纯氧气中氧化,避免因水分导致的钙钛矿层分解。实验结果表明,氧气氧化后的器件最高效率为7.19%,高于空气中氧化的器件达到的最高效率6.29%,并且氧气氧化可以将Spiro-OMeTAD的氧化时间从18小时缩短到5小时。我们采用一系列电化学表征方法探讨了不同氧化条件下电池器件的性能差异.结果显示,纯氧气氧化Spiro-OMeTAD可以有效减低载流子复合,提高电荷传输。此外,我们采集了多个样本统计分析,发现采用氧气氧化的器件平均效率更高,器件质量更稳定,具有更好的可重复性。这种快速稳定的氧化方法为钙钛矿型太阳能电池的商业化开发提供了有效的思路。
王伟国, 白天, 薛高飞, 叶美丹. CsPbIBr2钙钛矿太阳能电池中通过氧气诱导Spiro-OMeTAD快速氧化[J]. 电化学(中英文), 2021, 27(2): 216-226.
Wei-Guo Wang, Tian Bai, Gao-Fei Xue, Mei-Dan Ye. Oxygen-Exposure Induced Rapid Oxidation of Spiro-OMeTAD in CsPbIBr2 Perovskite Solar Cells[J]. Journal of Electrochemistry, 2021, 27(2): 216-226.
Table 1
The best parameters of PSCs oxidized under different conditions.
Device | PCE/% | VOC/V | JSC/(mA·cm-2) | FF/% | Area/cm2 |
---|---|---|---|---|---|
0 h | 0.29 | 0.37 | 3.34 | 23.84 | 0.09 |
O2-1 h | 2.04 | 1.20 | 7.56 | 22.39 | 0.09 |
O2-3 h | 3.77 | 1.21 | 8.06 | 38.50 | 0.09 |
O2-5 h | 7.19 | 1.19 | 9.92 | 60.38 | 0.09 |
O2-7 h | 5.71 | 1.22 | 8.49 | 54.85 | 0.09 |
Air-12 h | 2.99 | 1.24 | 7.10 | 33.7 | 0.09 |
Air-18 h | 6.29 | 1.26 | 9.41 | 52.90 | 0.09 |
Air-30 h | 3.77 | 1.23 | 6.80 | 44.75 | 0.09 |
[1] |
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051.
doi: 10.1021/ja809598r URL |
[2] |
Sahli F, Werner J, Kamino BA, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nat. Mater., 2018,17(9):820-826.
doi: 10.1038/s41563-018-0115-4 URL |
[3] |
Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchun-angatchaval T, Wheeler S, Durrant J R, Haque S A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy. Environ. Sci., 2016,9(5):1655-1660.
doi: 10.1039/C6EE00409A URL |
[4] |
Pearson A J, Eperon G E, Hopkinson P E, Habisreutinger S N, Wang J T W, Snaith H J, Greenham N C. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms[J]. Adv. Energy Mater., 2016,6(13):1600014.
doi: 10.1002/aenm.v6.13 URL |
[5] |
Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J. Organometal halide perovskite solar cells: degradation and stability[J]. Energy Environ. Sci., 2016,9(2):323-356.
doi: 10.1039/C5EE02733K URL |
[6] |
Huang J, Tan S, Lund P D, Zhou H. Impact of H2O on organic-inorganic hybrid perovskite solar cells[J]. Energy Environ. Sci., 2017,10(11):2284-2311.
doi: 10.1039/C7EE01674C URL |
[7] |
Dong Q, Liu F, Wong M K, Tam H W, Djurišic A B, Ng A, Surya C, Chan W K, Ng AMC. Encapsulation of perovskite solar cells for high humidity conditions[J]. ChemSusChem, 2016,9(18):2597-2603.
doi: 10.1002/cssc.201600868 pmid: 27504719 |
[8] |
Weerasinghe H C, Dkhissi Y, Scully A D, Caruso R A, Cheng Y B. Encapsulation for improving the lifetime of flexible perovskite solar cells[J]. Nano Energy, 2015,18:118-125.
doi: 10.1016/j.nanoen.2015.10.006 URL |
[9] |
Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley P A, Ducati C, Di Carlo A. Encapsulation for long-term stability enhancement of perovskite solar cells[J]. Nano Energy, 2016,30:162-172.
doi: 10.1016/j.nanoen.2016.09.041 URL |
[10] |
Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y. Stability of all-inorganic perovskite solar cells[J]. Nano Energy, 2020,67:104249.
doi: 10.1016/j.nanoen.2019.104249 URL |
[11] |
Li B, Fu L, Li S, Li H, Pan L, Wang L, Chang B H, Yin L W. Pathways toward high-performance inorganic perovskite solar cells: challenges and strategies[J]. J. Mater. Chem. A, 2019,7(36):20494-20518.
doi: 10.1039/C9TA04114A URL |
[12] |
Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z R, Ma Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lü H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J. All-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2016,138(49):15829-15832.
doi: 10.1021/jacs.6b10227 URL |
[13] |
Liang J, Zhao P Y, Wang C X, Wang Y R, Hu Y, Zhu G Y, Ma L B, Liu J, Jin Z. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and dtability[J]. J. Am. Chem. Soc., 2017,139(40):14009-14012.
doi: 10.1021/jacs.7b07949 URL |
[14] |
Wang Y, Dar M I, Ono L K, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%[J]. Science, 2019,365(6453):591-595.
doi: 10.1126/science.aav8680 URL |
[15] |
Chu W B, Saidi W A, Zhao J, Prezhdo O V. Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects[J]. Angew. Chem. Int. Ed., 2020,59(16):6435-6441.
doi: 10.1002/anie.v59.16 URL |
[16] |
You Y B, Tian W, Wang M, Coo F R, Sun H X, Li L. PEG modified CsPbIBr2 perovskite film for efficient and stable solar cells[J]. Adv. Mater. Interfaces, 2020,7(13):2000537.
doi: 10.1002/admi.v7.13 URL |
[17] |
Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells[J]. Joule, 2019,3(1):191-204.
doi: 10.1016/j.joule.2018.10.011 URL |
[18] |
Gao B W, Meng J. Highly stable all-inorganic CsPbIBr2 perovskite solar cells with 11.30% efficiency using crystal interface passivation[J]. ACS Appl. Energy Mater. 2020,3(9):8249-8256.
doi: 10.1021/acsaem.0c00678 URL |
[19] |
Liang J, Zhu G Y, Wang C X, Zhao P Y, Wang Y R, Hu Y, Ma L B, Tie Z X, Liu J, Jin Z. An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging[J]. Nano Energy, 2018,52:239-245.
doi: 10.1016/j.nanoen.2018.07.060 URL |
[20] |
Ma L B, Zhang W J, Zhao P Y, Liang J, Hu Y, Zhu G Y, Chen R P, Tie Z X, Liu J, Jin Z. Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays[J]. J. Mater. Chem. A, 2018,6(41):20076-20082.
doi: 10.1039/C8TA08116F URL |
[21] |
Liang J, Liu J, Jin Z. All-inorganic halide perovskites for optoelectronics: progress and prospects[J]. Sol. RRL, 2017,1(10):1700086.
doi: 10.1002/solr.201700086 URL |
[22] |
Liang J, Wang C X, Zhao P Y, Lu Z P, Ma Y, Xu Z R, Wang Y R, Zhu H F, Hu Y, Zhu G Y, Ma L B, Chen T, Tie Z X, Liu J, Jin Z. Solution synjournal and phase control of inorganic perovskites for high-performance optoelectronic devices[J]. Nanoscale, 2017,9(33):11841-11845.
doi: 10.1039/c7nr03530f pmid: 28792059 |
[23] |
Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nckel oxide hole-transporting layer[J]. Adv. Mater., 2015,27(4):695-701.
doi: 10.1002/adma.201404189 URL |
[24] |
Ameen S, Rub M A, Kosa S A, Alamry K A, Akhtar M S, Shin H S, Seo H K, Asiri A M, Nazeeruddin M K. Perovskite solar cells: influence of hole transporting materials on power conversion eefficiency[J]. ChemSusChem, 2016,9(1):10-27.
doi: 10.1002/cssc.201501228 URL |
[25] |
Jeon N J, Lee H G, Kim Y C, Seo J, Noh J H, Lee J, Seok S I. o-Methoxy substituents in Spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells[J]. J. Am. Chem. Soc., 2014,136(22):7837-7840.
doi: 10.1021/ja502824c URL |
[26] |
Dualeh A, Moehl T, Nazeeruddin M K, Grätzel M. Temperature dependence of transport properties of Spiro-MeOTAD as a hole transport material in solid-state dye-sensitized solar cells[J]. ACS Nano, 2013,7(3):2292-2301.
doi: 10.1021/nn4005473 URL |
[27] |
Schölin R, Karlsson M H, Eriksson S K, Siegbahn H, Johansson E M J, Rensmo H. Energy level shifts in spiro-OMeTAD molecular thin films when adding Li-TFSI[J]. J. Phys. Chem. C, 2012,116(50):26300-26305.
doi: 10.1021/jp306433g URL |
[28] |
Wang Y M, Qu H, Zhang C M, Chen Q. Rapid oxidation of the hole transport layer in perovskite solar cells by a low-temperature plasma[J]. Sci. Rep., 2019,9(1):459.
doi: 10.1038/s41598-018-36685-6 URL |
[29] |
Nouri E, Wang Y L, Chen Q, Xu J J, Dracopoulos V, Sygellou L, Xu Z X, Mohammadi M R, Lianos P. The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells[J]. Electrochim. Acta, 2016,222:1417-1423.
doi: 10.1016/j.electacta.2016.11.119 URL |
[30] |
Nguyen W H, Bailie C D, Unger E L, McGehee M D. Enhancing the hole-conductivity of Spiro-OMeTAD without oxygen or lithium salts by using Spiro(TFSI)2 in perovskite and dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2014,136(31):10996-11001.
doi: 10.1021/ja504539w URL |
[31] |
Liu G L, Xi X, Chen R L, Chen L P, Chen G Q. Oxygen aging time: A dominant step for spiro-OMeTAD in perovskite solar cells[J]. J. Renew. Sustain. Ener., 2018,10(4):043702.
doi: 10.1063/1.5031167 URL |
[32] |
Wang H X, Cao S L, Yang B, Li H Y, Wang M, Hu X F, Sun K, Zang Z G. NH4Cl - modified ZnO for high-performance CsPbIBr2 perovskite solar cells via low-temperature process[J]. Sol. RRL, 2019,4(1):1900363.
doi: 10.1002/solr.v4.1 URL |
[33] |
Guo Y X, Yin X T, Liu J, Que W X. Highly efficient CsPbIBr2 perovskite solar cells with efficiency over 9.8% fabricated using a preheating-assisted spin-coating method[J]. J. Mater. Chem. A, 2019,7(32):19008-19016.
doi: 10.1039/C9TA03336J URL |
[34] |
Lu J J, Chen S C, Zheng Q D. Defect passivation of CsPbIBr2 perovskites for high-performance solar cells with large open-circuit voltage of 1.28 V[J]. ACS Appl. Energy Mater., 2018,1(11):5872-5878.
doi: 10.1021/acsaem.8b01430 URL |
[35] |
Zhu W D, Zhang Z Y, Chai W M, Chen D Z, Xi H, Chang J J, Zhang J C, Zhang C F, Hao Y. Benign pinholes in CsPbIBr2 absorber film enable efficient carbon-based, all-inorganic perovskite solar cells[J]. ACS Appl. Energy Mater., 2019,2(7):5254-5262.
doi: 10.1021/acsaem.9b00944 URL |
[36] |
Liu P Y, Yang X Q, Chen Y H, Xiang H M, Wang W, Ran R, Zhou W, Shao Z P. Promoting the efficiency and stability of CsPbIBr2-based all-inorganic perovskite solar cells through a functional Cu2+ doping strategy[J]. ACS Appl. Mater. Interfaces, 2020,12(21):23984-23994.
doi: 10.1021/acsami.0c04938 URL |
[37] |
Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells[J]. Nat. Commun., 2017,8(1):15218.
doi: 10.1038/ncomms15218 URL |
[38] |
Zhou Y Y, Zhao Y X. Chemical stability and instability of inorganic halide perovskites[J]. Energy Environ. Sci., 2019,12(5):1495-1511.
doi: 10.1039/C8EE03559H URL |
[39] |
Liu S C, Li Z, Yang Y, Wang X, Chen Y X, Xue D J, Hu J S. Investigation of oxygen passivation for high-performance all-inorganic perovskite solar cells[J]. J. Am. Chem. Soc., 2019,141(45):18075-18082.
doi: 10.1021/jacs.9b07182 URL |
[40] |
Tian Y X, Peter M, Unger E, Abdellah M, Zheng K, Pullerits T, Yartsev A, Sundström V, Scheblykin I G. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold[J]. Phys. Chem. Chem. Phys., 2015,17(38):24978-24987.
doi: 10.1039/C5CP04410C URL |
[41] |
Brenes R, Guo D, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D. Metal halide perovskite polycrystalline films exhibiting properties of single crystals[J]. Joule, 2017,1(1):155-167.
doi: 10.1016/j.joule.2017.08.006 URL |
[42] |
Zarazua I, Bisquert J, Garcia-Belmonte G. Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells[J]. J. Phys. Chem. Lett., 2016,7(3):525-528.
doi: 10.1021/acs.jpclett.5b02810 pmid: 26783719 |
[43] |
Almora O, Zarazua I, Mas-Marza E, Mora-Sero I, Bisquert J, Garcia-Belmonte G. Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells[J]. J. Phys. Chem. Lett., 2015,6(9):1645-1652.
doi: 10.1021/acs.jpclett.5b00480 pmid: 26263328 |
[44] |
Correa-Baena J P, Turren-Cruz S H, Tress W, Hagfeldt A, Aranda C, Shooshtari L, Bisquert J, Guerrero A. Changes from bulk to surface recombination mechanisms between pristine and cycled perovskite solar cells[J]. ACS Energy Lett., 2017,2(3):681-688.
doi: 10.1021/acsenergylett.7b00059 URL |
[45] | Subhani W S, Wang K, Du M Y, Wang X L, Liu S Z. Interface-modification-induced gradient energy band for highly efficient CsPbIBr2 perovskite solar cells[J]. Adv. Energy Mater., 2019,9(21):1703785. |
[46] |
Burschka J, Dualeh A, Kessler F, Baranoff E, Cevey-Ha N L, Yi C, Nazeeruddin M K, Grätzel M. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2011,133(45):18042-18045.
doi: 10.1021/ja207367t URL |
[47] | Guillén E, Ramos F J, Anta J A, Ahmad S. Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques[J]. J. Phys. Chem. Lett., 2014,118(40):22913-22922. |
[48] |
Yadav P, Alotaibi M H, Arora N, Dar M I, Zakeeruddin S M, Grätzel M. Influence of the nature of a cation on dynamics of charge transfer processes in perovskite solar cells[J]. Adv. Funct. Mater., 2018,28(8):1706073.
doi: 10.1002/adfm.v28.8 URL |
[49] |
Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys., 2013,15(7):2572-2579.
doi: 10.1039/c2cp44397j URL |
[50] |
Correa-Baena J P, Abate A, Saliba M, Tress W, Jesper Jacobsson T, Grätzel M, Hagfeldt A. The rapid evolution of highly efficient perovskite solar cells[J]. Energy Environ. Sci., 2017,10(3):710-727.
doi: 10.1039/C6EE03397K URL |
[51] |
Correa-Baena J P, Anaya M, Lozano G, Tress W, Domanski K, Saliba M, Matsui T, Jacobsson T J, Calvo M E, Abate A, Grätzel M, Míguez H, Hagfeldt A. Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement[J]. Adv. Mater., 2016,28(25):5031-5037.
doi: 10.1002/adma.201600624 URL |
[52] |
Pérez-del-Rey D, Forgács D, Hutter E M, Savenije T J, Nordlund D, Schulz P, Berry J J, Sessolo M, Bolink H J. Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells[J]. Adv. Mater., 2016,28(44):9839-9845.
doi: 10.1002/adma.201603016 |
[1] | 邹庚, 冯炜程, 宋月锋, 汪国雄. 固体氧化物电解池阳极材料研究进展[J]. 电化学(中英文), 2023, 29(2): 2215006-. |
[2] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[3] | 韦童, 李箭, 贾礼超, 池波, 蒲健. 钙钛矿材料在固体氧化物燃料电池燃料重整中的应用[J]. 电化学(中英文), 2020, 26(2): 198-211. |
[4] | 李一航, 夏长荣. 固体氧化物电解池直接电解CO2的研究进展[J]. 电化学(中英文), 2020, 26(2): 162-174. |
[5] | 张 囡,叶美丹, 温晓茹, 林昌健. 通过磁控溅射金属钛生长金红石型二氧化钛纳米片阵列应用于钙钛矿太阳能电池[J]. 电化学(中英文), 2017, 23(2): 226-237. |
[6] | 刘晓东,李永舫. 阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能[J]. 电化学(中英文), 2016, 22(4): 315-331. |
[7] | 许子颉,张发荫,洪晓丹,郭文熹,刘向阳,林昌健. 基于网状铂电极的新型柔性染料敏化太阳能电池[J]. 电化学(中英文), 2016, 22(4): 397-403. |
[8] | 刘双双,鲁建峰,王鸣魁. 卟啉及其光电化学研究进展[J]. 电化学(中英文), 2016, 22(4): 340-355. |
[9] | 李亚峰,孙晴晴,魏明灯. 金属有机框架在染料敏化太阳能电池中的应用[J]. 电化学(中英文), 2016, 22(4): 332-339. |
[10] | 乔文远,郭强,李聪,马爽,王福芝,戴松元,谭占鳌. 基于WOx/PEDOT:PSS复合空穴传输层的高效稳定平面异质结钙钛矿太阳电池[J]. 电化学(中英文), 2016, 22(4): 382-389. |
[11] | 徐暘, 包彦彦, 杜龙飞, 曹殿学, 王贵领. 钙钛矿La1-xSrxCoO3的电化学电容性能[J]. 电化学(中英文), 2013, 19(2): 174-177. |
[12] | 窦衍叶, 晏南富, 李国然, 高学平. 碳纳米管负载Ni2P作为染料敏化太阳能电池对电极的性能研究[J]. 电化学(中英文), 2012, 18(4): 301-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||