[1] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
doi: 10.1038/451652a
URL
|
[2] |
Chen D J, Zhou Z Q, Feng C, Lü W Q, Wei Z H, Zhang K H L, Lin B, Wu S H, Lei T Y, Guo X Y, Zhu G L, Jian X, Xiong J, Traversa E, Dou S X, He W D. An upgraded lithium ion battery based on a polymeric separator incorporated with anode active materials[J]. Adv. Energy Mater., 2019, 9(15): 1803627.
doi: 10.1002/aenm.v9.15
URL
|
[3] |
Qi W, Shapter J G, Wu Q, Yin T, Gao G, Cui D X. Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives[J]. J. Mater. Chem. A, 2017, 5(37): 19521-19540.
doi: 10.1039/C7TA05283A
URL
|
[4] |
Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. J. Power Sources, 2010, 195(9): 2419-2430.
doi: 10.1016/j.jpowsour.2009.11.048
URL
|
[5] |
Jin J Y, Wang Z W, Wang R, Wang J L, Huang Z D, Ma Y W, Li H, Wei S H, Huang X, Yan J X, Li S Z, Huang W. Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping[J]. Adv. Funct. Mater., 2019, 29(12): 1807441.
doi: 10.1002/adfm.v29.12
URL
|
[6] |
Pralong V, Souza D C S, Leung K T, Nazar L F. Reversible lithium uptake by CoP3 at low potential: role of the anion[J]. Electrochem. Commun., 2002, 4(6): 516-520.
doi: 10.1016/S1388-2481(02)00363-6
URL
|
[7] |
Lou P L, Cui Z H, Jia Z Q, Sun J Y, Tan Y B, Guo X X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage[J]. ACS Nano, 2017, 11(4): 3705-3715.
doi: 10.1021/acsnano.6b08223
URL
|
[8] |
Carenco S, Surcin C, Morcrette M, Larcher D, Mezailles N, Boissiere C, Sanchez C. Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating[J]. Chem. Mater., 2012, 24(4): 688-697.
doi: 10.1021/cm203164a
URL
|
[9] |
Feng Y Y, OuYang Y, Peng L, Qiu H J, Wang H L, Wang Y. Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced water splitting and lithium storage performance[J]. J. Mater. Chem. A, 2015, 3(18): 9587-9594.
doi: 10.1039/C5TA01103E
URL
|
[10] |
Li M, Du H R, Kuai L, Huang K F, Xia Y Y, Geng B Y. Scalable dry production process of a superior 3D net-like carbon‐based iron oxide anode material for lithium-ion batteries[J]. Angew. Chem. Int. Ed., 2017, 56(41): 12649-12653.
doi: 10.1002/anie.v56.41
URL
|
[11] |
Green O, Grubjesic S, Lee S W, Firestone M A. The design of polymeric ionic liquids for the preparation of functional materials[J]. Polym. Rev., 2009, 49(4): 339-360.
doi: 10.1080/15583720903291116
URL
|
[12] |
Kang X C, Sun X F, Han B X. Synjournal of functional nanomaterials in ionic liquids[J]. Adv. Mater., 2016, 28(6): 1011-1030.
doi: 10.1002/adma.201502924
URL
|
[13] |
Zhang H F(张韩方), Wei F(魏风), Sun J(孙健), Jing M Y(荆梦莹), He X J(何孝军). Ionic liquid assisted synjournal of porous carbons from rice husk for supercapacitors[J]. J. Electrochem.(电化学), 2019, 25(6): 764-772.
|
[14] |
Chen T Q, Pan L K, Lu T, Fu C L, Chua D H C, Sun Z. Fast synjournal of carbon microspheres via a microwave-assisted reaction for sodium ion batteries[J]. J. Mater. Chem. A, 2014, 2(5): 1263-1267.
doi: 10.1039/C3TA14037G
URL
|
[15] |
Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2007, 9(11): 1276-1290.
pmid: 17347700
|
[16] |
Zheng F C, Yang Y, Chen Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nat. Commun., 2014, 5(5): 5261.
doi: 10.1038/ncomms6261
URL
|
[17] |
Lu Y Y, Li Z W, Bai Z Y, Mi H Y, Ji C C, Pang H, Yu C, Qiu J S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode[J]. Nano Energy, 2019, 66: 104132.
doi: 10.1016/j.nanoen.2019.104132
URL
|
[18] |
Xia Q Y, Yang H, Wang M, Yang M, Guo Q B, Wan L M, Xia H, Yu Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode[J]. Adv. Energy Mater., 2017, 7(22): 1701336.
doi: 10.1002/aenm.201701336
URL
|
[19] |
Wang H G, Yuan C P, Zhou R, Duan Q, Li Y H. Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries[J]. Chem. Eng. J., 2017, 316: 1004-1010.
doi: 10.1016/j.cej.2017.02.059
URL
|
[20] |
Ma W P, Xie L J, Dai L Q, Sun G H, Chen J Z, Su F Y, Cao Y F, Lei H, Kong Q Q, Chen C M. Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode[J]. Electrochim. Acta, 2018, 266: 420-430.
doi: 10.1016/j.electacta.2018.02.031
URL
|
[21] |
Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X L, Mullen K. Three-dimensional nitrogen and boron Co-doped graphene for high-performance all-solid-state supercapacitors[J]. Adv. Mater., 2012, 24(37): 5130-5135.
doi: 10.1002/adma.201201948
URL
|
[22] |
Huang L J, Cao X X, Pan A Q, Chen J, Kong X Z, Yang Y Q, Liang S Q, Cao G Z. Bimetallic phosphides embedded in hierarchical P-doped carbon for sodium ion battery and hydrogen evolution reaction applications[J]. Sci. China. Mater., 2019, 62(12): 1857-1867.
doi: 10.1007/s40843-019-9474-0
URL
|
[23] |
Dong C F, Guo L J, He Y Y, Chen C J, Qian Y T, Chen Y N, Xu L Q. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries[J]. Energy Stor. Mater., 2018, 15: 234-241.
|
[24] |
Zheng J L, Huang X M, Pan X, Teng C, Wang N. Yolk-shelled Ni2P@carbon nanocomposite as high-performance anode material for lithium and sodium ion batteries[J]. Appl. Surf. Sci., 2019, 473: 699-705.
doi: 10.1016/j.apsusc.2018.12.225
URL
|
[25] |
Lu Y, Wang X L, Mai Y J, Xiang J Y, Zhang H, Li L, Gu C D, Tu J P, Mao S X. Ni2P/graphene sheets as anode materials with enhanced electrochemical properties versus lithium[J]. J. Phys. Chem. C, 2012, 116(42): 22217-22225.
doi: 10.1021/jp3073987
URL
|
[26] |
Guo H N, Cai H C, Li W Q, Chen C C, Chen K, Zhang Y, Li Y W, Wang M Y, Wang Y J. Tailored Ni2P nanoparticles supported on N-doped carbon as a superior anode material for Li-ion batteries[J]. Inorg. Chem. Front., 2019, 6(7): 1881-1889.
doi: 10.1039/C9QI00480G
URL
|
[27] |
Xia Q, Zhao H L, Du Z H, Zhang Z J, Li S M, Gao C H, Swierczek K. Design and synjournal of a 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries[J]. J. Mater. Chem. A, 2016, 4(2): 605-611.
doi: 10.1039/C5TA07052J
URL
|
[28] |
Brousse T, B'elanger D, Long J W. To be or not to be pseudocapacitive?[J]. J. Electrochem. Soc., 2015, 162(5): A5185-A5189.
doi: 10.1149/2.0201505jes
URL
|
[29] |
Li J B, Li J L, Yan D, Hou S J, Xu X T, Lu T, Yao Y F, Mai W J, Pan L K. Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance[J]. J. Mater. Chem. A, 2018, 6(15): 6595-6605.
doi: 10.1039/C8TA00557E
URL
|
[30] |
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy Environ. Sci., 2014, 7(5): 1597-1614.
doi: 10.1039/c3ee44164d
URL
|