[1] Cheng F Y, Chen J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172-2192.
[2] Lee J S, Tai Kim S, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1): 34-50.
[3] Shao Y Y, Park S, Xiao J, et al. Electrocatalysts for nonaqueous lithium-air batteries: Status, challenges, and perspective[J]. ACS Catalysis, 2012, 2(5): 844-857.
[4] Débart A, Bao J, Armstrong G, Bruce P G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst[J]. Journal of Power Sources, 2007, 174(2): 1177-1182.
[5] Wang Z L, Xu D, Xu J J, et al. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes[J]. Chemical Society Reviews, 2014, 43(22): 7746-7786.
[6] Tong S F(童圣富), He P(何平), Zhang X P(张雪苹), et al. Lithium air batteries: Non-aqueous and hybrid systems[J]. Journal of Electrochemistry(电化学), 2015, 21(3): 234-252.
[7] Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003, 63(15): 2223-2253.
[8] Li D, McCann J T, Xia Y N, et al. Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes[J]. Journal of the American Ceramic Society, 2006, 89(6): 1861-1869.
[9] Lu X F, Wang C, Wei Y. One-dimensional composite nanomaterials: synthesis by electrospinning and their applications[J]. Small, 2009, 5(21): 2349-2370.
[10] Wu J, Wang N, Zhao Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013, 1(25): 7290-7305.
[11] Mai L Q, Xu L, Han C H, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J]. Nano Letters, 2010, 10(11): 4750-4755.
[12] Ryu W H, Yoon T H, Song S H, et al. Bifunctional composite catalysts using CO3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries[J]. Nano Letters, 2013, 13(9): 4190-4197.
[13] Zhang L X, Zhang S L, Zhang K J, et al. Mesoporous NiCO2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries[J]. Chemical Communications, 2013, 49(34): 3540-3542.
[14] Sun B, Zhang J Q, Munroe P, et al. Hierarchical NiCO2O4 nanorods as an efficient cathode catalyst for rechargeable non-aqueous Li-O2 batteries[J]. Electrochemistry Communications, 2013, 31(6): 88-91.
[15] Zhou X H, Shang C Q, Gu L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 3058-3063
[16] Chaudhari S, Srinivasan M. 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(43): 23049-23056.
[17] Salvador-Pascual J J, Citalán-Cigarroa S, Solorza-Feria O. Kinetics of oxygen reduction reaction on nanosized Pd electrocatalyst in acid media[J]. Journal of Power Sources, 2007, 172(1): 229-234.
[18] Wu J, Yang Z R, Li X W, et al. Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction[J]. Journal of Materials Chemistry A, 2013, 1(24): 9889-9896.
[19] Toh R J, Eng A Y S, Sofer Z, et al. Ternary transition metal oxide nanoparticles with spinel structure for the oxygen reduction reaction[J]. ChemElectroChem, 2015, 2(7): 982-987.
[20] Li C, Han X P, Cheng F Y, et al. Phase and composition controllable synthesis of cobalt manganese spinel nano-particles towards efficient oxygen electrocatalysis[J]. Nature Communications, 2015, 6: 7345.
[21] De Koninck M, Marsan B. MnxCu1-xCO2O4 used as bifunctional electrocatalyst in alkaline medium[J]. Electrohimica Acta, 2008, 53(23): 7012-7021.
[22] Liu T(刘通), Li N(李娜), Liu Q C(刘清朝), et al. Porous Co3O4 hollow nanospheres cathode catalyst for high-capacity and long-cycle Li-air batteries[J]. Journal of Electrochemistry(电化学), 2015, 21(2): 157-161.
[23] Kim J M, Joh H I, Jo S M, et al. Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation[J]. Electrochimica Acta, 2010, 55(16): 4827-4835.
[24] Wang Y Z, Li Y X, Sun G, et al. Fabrication of Au/PVP nanofiber composites by electrospinning[J]. Journal of Applied Polymer Science, 2007, 105(6): 3618-3622.
[25] Wu J, Park H W, Yu A, et al. Facile synthesis and evaluation of nanofibrous iron-carbon based non-precious oxygen reduction reaction catalysts for Li-O2 battery applications[J]. The Journal of Physical Chemistry C, 2012, 116(17): 9427-9432.
[26] Li J X, Zou M Z, Chen L Z, et al. An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014,2(27): 10634-10638.
[27] Huang J Q, Zhang B, Xie Y Y, et al. Electrospun graphitic carbon nanofibers with in-situ encapsulated Co-Ni nanoparticles as freestanding electrodes for Li-O2 batteries[J]. Carbon, 2016, 100: 329-336.
[28] Sun D, Shen Y, Zhang W, et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries[J]. Journal of the American Chemical Society, 2014, 136(25): 8941-8946.
[29] Song M J, Shin M W. Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery[J]. Applied Surface Science, 2014, 320: 435-440.
[30] Nie H J, Xu C, Zhou W, et al. Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1937-1942.
[31] Ma Z, Yuan X X, Li L, et al. A review of cathode materials and structures for rechargeable lithium-air batteries[J].Energy & Environmental Science, 2015, 8(8): 2144-2198. [32] Xu J J, Xu D, Wang Z L,et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Angewandat Chemie International Edition, 2013, 52(14): 3887-3890.
[33] Li P F, Zhang J K, Yu Q L, et al. One-dimensional porous La0.5Sr0.5CoO2.91 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries[J]. Electrochimica Acta, 2015, 165: 78-84.
[34] Liu G X, Chen H B, Xia L, et al. Hierarchical mesoporous/macroporous perovskite La0.5Sr0.5CoO3-x nanotubes: A bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22478-22486.
[35] Park H W, Lee D U, Zamani P, et al. Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries[J]. Nano Energy, 2014, 10: 192-200.
[36] Jung K N, Lee J I, Yoon S, et al. Manganese oxide/carbon composite nanofibers: electrospinning preparation and application as a bi-functional cathode for rechargeable lithium-oxygen batteries[J]. Journal of Materials Chemistry, 2012, 22(41): 21845-21849.
[37] Zhang P, He M, Xu S, et al. The controlled growth of porous δ-MnO2 nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2015, 3(20): 10811-10818.
[38] Xu S M, Zhu Q C, Du F H, et al. CO3O4-based binder-free cathodes for lithium-oxygen batteries with improved cycling stability[J]. Dalton Transactions, 2015, 44(18): 8678-8684.
[39] Song M J, Kim I T, Kim Y B, et al. Self-standing, binder-free electrospun CO3O4/carbon nanofiber composites for non-aqueous Li-air batteries[J]. Electrochimica Acta, 2015, 182: 289-296.
[40] Kang S H, Song K, Jung J, et al. Polymorphism-induced catalysis difference of TiO2 nanofibers for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014, 2(46): 19660-19664.
[41] Zhang X Z, Han D, He Y B, et al. Mesoporous Cr2O3 nanotubes as an efficient catalyst for Li-O2 batteries with low charge potential and enhanced cyclic performance[J].Journal of Materials Chemistry A, 2016, 4(20): 7727-7735.
[42] Li L Y, Shen L, Nie P, et al. Porous NiCO2O4 nanotubes as a noble-metal-free effective bifunctional catalyst for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2015, 3(48): 24309-24314.
[43] Li J, Li Y, Guo K, et al. Porous MnNi2O4 nanorods as an efficient bifunctional catalyst for rechargeable Li-O2 battery[J]. Intenational Journal of Electrochemical science, 2016, 11(4): 3227-3237.
[44] Xue H R, Mu X W, Tang J, et al. A nickel cobaltate nanoparticle-decorated hierarchical porous N-doped carbon nanofiber film as a binder-free self-supported cathode for nonaqueous Li-O2 batteries[J]. Journal of Materials Chemistry A, 2016, 4(23): 9106-9112. |