[1]Kaita H, Shimazu K, Kunimatsu K. Electrochemical oxidation of CO on Pt in acidic and alkaline solution: Part I. voltammetric study on the adsorbed species and effects of aging and Sn(IV) pretreatment[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 241(1/2): 163-179.[2]Kunimatsu K, Seki H, Golden W G, et al. Carbon monoxide adsorption on a platinum electrode studied by polarization-modulated FT-IR reflection-absorption spectroscopy: II. Carbon monoxide adsorbed at a potential in the hydrogen region and its oxidation in acids[J]. Langmuir, 1985, 1(2): 245-250.[3]Chang S C, Weaver M J. In situ infrared spectroscopy of carbon monoxide adsorbed at ordered platinum(100)-aqueous interfaces: Double-layer effects upon the adsorbate binding geometry[J]. The Journal of Physical Chemistry, 1990, 94(12): 5095-5102. [4]Wantanabe S, Kinomoto Y, Kitamura F, et al. Electron Spectrosc. Rel[J]. Phenom, 1990, 54(5): 1205-1214.[5]Akemann W, Friedrich K A, Stimming U. Potential-dependence of CO adlayer structures on Pt(111) electrodes in acid solution: Evidence for a site selective charge transfer[J]. Journal of Chemical Physics, 2000, 113(16): 6864-6867.[6]Lopez-Cudero A, Cuesta A, Gutierrez C. Potential depence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 2: Pt(100)[J]. Journal of Electroanalytical Chemistry, 2006, 586(2): 204-216.[7]Markovic N M, Lucas C A, Grgur B N, et al. Surface electrochemistry of CO and H2/CO mixtures at Pt(100) interface: Electrode kinetics and interfacial structures[J]. The Journal of Physical Chemistry B, 1999, 103(44): 9616-9623.[8]Batista E A, Iwasita T, Vielstich W. Mechanism of stationary bulk co oxidation on Pt(111) electrodes[J]. The Journal of physical Chemistry B, 2004, 108(38): 14216-14222.[9]Strmcnik D S, Tripkovic D V, van der Vliet D, et al. Unique activity of platinum adisland in the CO electrooxidation reaction[J]. Journal of the American Chemical Society, 2008, 130(46): 15332-15339.[10]Hu J W, Li J F, Ren B, et al. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate[J]. The Journal of Physical Chemistry C, 2007, 111(3): 1105-1112.[11]Kunimatsu K, Sato T, Uchida H, et al. Adsorption/oxidation of Coon highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: Oxidation of CO adsorbed on carbon-supported Pt catalyst and unsupported Pt black[J]. Langmuir, 2008, 24(7): 3590-3601. [12]Kunimatsu K, Sato T, Uchida H et al. Role of terrace/step edge sites in CO adsorption/oxidation on a polycrystalline Pt electrode studied by in-situ ATR-FTIR method[J]. Electrochimica Acta, 2008, 53(21): 6104-6110.[13]Zhang P, Cai J, Chen Y X, et al. Potential-dependent chemsorption of carbon monoxide at a gold core-platinum shell nanoparticle electrode: A combined study by electrochemical in situ surface-enhanced raman spectrosopy and density functional theory[J]. The Journal of Physical Chemistry C, 2010, 114(1): 403-411[14]Markovic N M, Ross P N. Surface science studies of model fuel cell electrocatalysts[J]. Surface Science Reports, 2002, 45(4): 117-229 |