电化学(中英文) ›› 2024, Vol. 30 ›› Issue (7): 2415001. doi: 10.61558/2993-074X.3461
• 观点 • 上一篇
杨方令a,b, 佐藤龙平a, 程建锋a, 木須一彰c, 王倩a,d, 贾雪a, 折茂慎一a,c, 李昊a,*()
收稿日期:
2024-02-16
修回日期:
2024-04-24
接受日期:
2024-04-24
出版日期:
2024-07-28
发布日期:
2024-04-26
Fang-Ling Yanga,b, Ryuhei Satoa, Eric Jianfeng Chenga, Kazuaki Kisuc, Qian Wanga,d, Xue Jiaa, Shin-ichi Orimoa,c, Hao Lia,*()
Received:
2024-02-16
Revised:
2024-04-24
Accepted:
2024-04-24
Published:
2024-07-28
Online:
2024-04-26
Contact:
*Hao Li, E-mail address: li.hao.b8@tohoku.ac.jp.
摘要:
镁(Mg)在地壳中的储量丰富且理论体积容量高,这使得其在储能领域备受关注,特别是在固态电池中,它极具发展潜力,可作为锂(Li)的替代品。然而,镁离子在固态电解质(SSE)中传导缓慢,这是阻碍镁离子固态电池发展的关键挑战之一。近年来,各种传导镁离子的SSE被广泛报道,但很难从单一的文献报告中得出关键的信息。此外,进一步阐明镁离子SSE的结构与性能关系是有必要的,这将为SSE提供更精确的设计指南。在这篇文章中,我们基于数据挖掘分析了过去四十年报道的具有高离子电导率的镁基SSE的结构特征,总结了三个优化镁离子固态电解质的策略。基于实验和理论计算技术的发展,讨论了现阶段开发镁固态电解质的机遇和挑战,论述了实验、理论计算和机器学习在开发新型高性能镁离子SSE过程中的协作过程。我们为优化和开发下一代镁离子固态电解质提供了大数据见解。
杨方令, 佐藤龙平, 程建锋, 木須一彰, 王倩, 贾雪, 折茂慎一, 李昊. 数据驱动发展下一代镁离子固态电解质[J]. 电化学(中英文), 2024, 30(7): 2415001.
Fang-Ling Yang, Ryuhei Sato, Eric Jianfeng Cheng, Kazuaki Kisu, Qian Wang, Xue Jia, Shin-ichi Orimo, Hao Li. Data-Driven Viewpoint for Developing Next-Generation Mg-Ion Solid-State Electrolytes[J]. Journal of Electrochemistry, 2024, 30(7): 2415001.
[1] | Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
[2] | Ding Y L, Cano Z P, Yu A P, Lu J, Chen Z W. Automotive Li-ion batteries: Current status and future perspectives[J]. Electrochem. Energy Rev., 2019, 2(1): 1-28. |
[3] | Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K. A lithium superionic conductor[J]. Nature, 2011, 10(9): 682-686. |
[4] | Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 627-631. |
[5] |
Kim S, Oguchi H, Toyama N, Sato T, Takagi S, Otomo T, Arunkumar D, Kuwata N, Kawamura J, Orimo S I. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries[J]. Nat. Commun., 2019, 10(1): 1081.
doi: 10.1038/s41467-019-09061-9 pmid: 30842419 |
[6] |
Li Y X, Song S B, Kim H, Nomoto K, Kim H, Sun X Y, Hori S, Suzuki K, Matsui N, Hirayama M. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381(6653): 50-53.
doi: 10.1126/science.add7138 pmid: 37410839 |
[7] | Lu P S, Xia Y, Sun G C, Wu D X, Wu S Y, Yan W L, Zhu X, Lu J Z, Niu Q H, Shi S C. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M = Si, Sn) sulfide solid electrolytes[J]. Nat. Commun., 2023, 14(1): 4077. |
[8] |
Hu L, Wang J Z, Wang K, Gu Z Q, Xi Z W, Li H, Chen F, Wang Y X, Li Z Y, Ma C. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nat. Commun., 2023, 14(1): 3807.
doi: 10.1038/s41467-023-39522-1 pmid: 37369677 |
[9] | Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat. Energy, 2016, 1(4): 1-7. |
[10] |
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935.
doi: 10.1126/science.1212741 pmid: 22096188 |
[11] |
Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176.
doi: 10.1021/ja3091438 pmid: 23294028 |
[12] |
Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat. Chem., 2015, 7(1): 19-29.
doi: 10.1038/nchem.2085 pmid: 25515886 |
[13] | Goodenough J B. How we made the Li-ion rechargeable battery[J]. Nat. Electron., 2018, 1(3): 204-204. |
[14] |
Whittingham M S. Lithium batteries and cathode materials[J]. Chem. Rev., 2004, 104(10): 4271-4302.
pmid: 15669156 |
[15] | Luo Y, Yang X F, Wang C H, Fraser A, Zhang H Z, Sun X L, Li X F. Advanced metal anodes and their interface design toward safe metal batteries: A comprehensive review[J]. Prog. Mater Sci., 2023: 101171. |
[16] | Liang Y L, Dong H, Aurbach D, Yao Y. Current status and future directions of multivalent metal-ion batteries[J]. Nat. Energy, 2020, 5(9): 646-656. |
[17] |
Attias R, Salama M, Hirsch B, Goffer Y, Aurbach D. Anode-electrolyte interfaces in secondary magnesium batteries[J]. Joule, 2019, 3(1): 27-52.
doi: 10.1016/j.joule.2018.10.028 |
[18] |
Zuo P J, Yin G P. Chelated electrolytes for divalent metal ions[J]. Science, 2021, 374(6564): 156-156.
doi: 10.1126/science.abi6643 pmid: 34618557 |
[19] | Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, Persson K, Ceder G. Materials design rules for multivalent ion mobility in intercalation structures[J]. Chem. Mater., 2015, 27(17): 6016-6021. |
[20] | Wang Q, Li H J, Zhang R X, Liu Z Z, Deng H Y, Cen W L, Yan Y G, Chen Y G. Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature[J]. Energy Storage Mater., 2022, 51: 630-637. |
[21] | Goodenough J B. Solid electrolytes[J]. Pure Appl. Chem., 1995, 67(6): 931-938. |
[22] | Ikeda S, Takahashi M, Ishikawa J, Ito K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in MgZrPO4 system[J]. Solid State Ionic, 1987, 23(1-2): 125-129. |
[23] | Jaschin P W, Gao Y, Li Y, Bo S H. A materials perspective on magnesium-ion-based solid-state electrolytes[J]. J. Mater. Chem. A, 2020, 8(6): 2875-2897. |
[24] | Anuar N K, Adnan S B, Mohamed N S. Characterization of Mg0.5Zr2(PO4)3 for potential use as electrolyte in solid state magnesium batteries[J]. Ceram. Int., 2014, 40(8): 13719-13727. |
[25] | Halim Z A, Adnan S B, Mohamed N S. Effect of sintering temperature on the structural, electrical and electrochemical properties of novel Mg0.5Si2(PO4)3 ceramic electrolytes[J]. Ceram. Int., 2016, 42(3): 4452-4461. |
[26] | Liang B, Keshishian V, Liu S, Yi E, Jia D, Zhou Y, Kieffer J, Ye B, Laine R M. Processing liquid-feed flame spray pyrolysis synthesized Mg0.5Ce0.2Zr1.8(PO4)3 nanopowders to free standing thin films and pellets as potential electrolytes in all-solid-state Mg batteries[J]. Electrochim. Acta, 2018, 272: 144-153. |
[27] | Le Ruyet R, Fleutot B, Berthelot R, Benabed Y, Hautier G, Filinchuk Y, Janot R L. Mg3(BH4)4(NH2)2 as inorganic solid electrolyte with high Mg2+ ionic conductivity[J]. ACS Appl. Energy Mater., 2020, 3(7): 6093-6097. |
[28] | Roedern E, Kühnel R S, Remhof A, Battaglia C. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries[J]. Sci. Rep., 2017, 7(1): 46189. |
[29] | Higashi S, Miwa K, Aoki M, Takechi K. A novel inorganic solid state ion conductor for rechargeable Mg batteries[J]. Chem. Commun., 2014, 50(11): 1320-1322. |
[30] |
Canepa P, Bo S H, Sai Gautam G, Key B, Richards W D, Shi T, Tian Y, Wang Y, Li J, Ceder G. High magnesium mobility in ternary spinel chalcogenides[J]. Nat. Commun., 2017, 8(1): 1759.
doi: 10.1038/s41467-017-01772-1 pmid: 29170372 |
[31] | Mohtadi R, Orimo S I. The renaissance of hydrides as energy materials[J]. Nat. Rev. Mater., 2016, 2(3): 1-15. |
[32] | Guo H Y, Wang Q, Stuke A, Urban A, Artrith N. Accelerated atomistic modeling of solid-state battery materials with machine learning[J]. Front. Energy Res., 2021, 9: 695902. |
[33] | Yang F L, Campos D S, Jia X, Sato R, Kisu K, Hashimoto Y, Orimo S I, Li H. A dynamic database of solid-state electrolyte (DDSE) picturing all-solid-state batteries[J]. Nano Mater. Sci., 2023. DOI: 10.1016/j.nanoms.2023.08.002 |
[34]. | A dynamic database of solid-state electrolyte DDSE picturing all-solid-state batteries.https://doi.org/10.50974/00137195. |
[35] | Ferrari S, Falco M, Muñoz G, Ana Belén, Bonomo M, Brutti S, Pavone M, Gerbaldi C. Solid‐state post Li metal ion batteries: A sustainable forthcoming reality?[J]. Adv. Energy Mater., 2021, 11(43): 2100785. |
[36] | Blanchard D, Maronsson J B, Riktor M, Kheres J, Sveinbjörnsson D, Gil Bardají E, Léon A, Juranyi F, Wuttke J, Lefmann K. Hindered rotational energy barriers of BH4-tetrahedra in β-Mg(BH4)2 from quasielastic neutron scattering and DFT calculations[J]. J. Phys. Chem. C, 2012, 116(2): 2013-2023. |
[37] | Le Ruyet R, Berthelot R, Salager E, Florian P, Fleutot B, Janot R. Investigation of Mg(BH4)(NH2)-based composite materials with enhanced Mg2+ ionic conductivity[J]. J. Phys. Chem. C, 2019, 123(17): 10756-10763. |
[38] | Matsuo M, Oguchi H, Sato T, Takamura H, Tsuchida E, Ikeshoji T, Orimo S I. Sodium and magnesium ionic conduction in complex hydrides[J]. J. Alloys Compd., 2013, 580: S98-S101. |
[39] | Ikeshoji T, Tsuchida E, Takagi S, Matsuo M, Orimo S I. Magnesium ion dynamics in Mg(BH4)2(1-x)X2x (X = Cl or AlH4) from first-principles molecular dynamics simulations[J]. RSC Adv., 2014, 4(3): 1366-1370. |
[40] | Amdisen M B, Grinderslev J B, Skov L N, Jensen T R. Methylamine magnesium borohydrides as electrolytes for all-solid-state magnesium batteries[J]. Chem. Mater., 2023, 35(3): 1440-1448. |
[41] | Pang Y P, Nie Z F, Xu F, Sun L X, Yang J H, Sun D L, Fang F, Zheng S Y. Borohydride ammoniate solid electrolyte design for all-solid‐state mg batteries[J]. Energy Environ. Mater., 2022: e12527. |
[42] | Kisu K, Kim S, Inukai M, Oguchi H, Takagi S, Orimo S I. Magnesium borohydride ammonia borane as a magnesium ionic conductor[J]. ACS Appl. Energy Mater., 2020, 3(4): 3174-3179. |
[43] | Guo M, Yuan C, Zhang T, Yu X. Solid-state electrolytes for rechargeable magnesium-ion batteries: From structure to mechanism[J]. Small, 2022, 18(43): e2106981. |
[44] | Yan Y G, Dononelli W, Jørgensen M, Grinderslev J B, Lee Y S, Cho Y W, Černý R, Hammer B, Jensen T R. The mechanism of Mg2+ conduction in ammine magnesium borohydride promoted by a neutral molecule[J]. Phys. Chem. Chem. Phys, 2020, 22(17): 9204-9209. |
[45] | Palumbo M, Kisu K, Gulino V, Nervi C, Maschio L, Casassa S, Orimo S I, Baricco M. Ion conductivity in a magnesium borohydride ammonia borane solid-state electrolyte[J]. J. Phys. Chem. C, 2022, 126(36): 15118-15127. |
[46] | Lu Z H, Ciucci F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study[J]. Chem. Mater., 2017, 29(21): 9308-9319. |
[47] | Kisu K, Dorai A, Kim S, Hamada R, Kumatani A, Horiguchi Y, Sato R, Sau K, Takagi S, Orimo S I. Fast divalent conduction in MB12H12·12H2O (M= Zn, Mg) complex hydrides: effects of rapid crystal water exchange and application for solid-state electrolytes[J]. J. Mater. Chem. A, 2022, 10(46): 24877-24887. |
[48] | Skov L N, Grinderslev J B, Rosenkranz A, Lee Y S, Jensen T R. Towards solid‐state magnesium batteries: Ligand-assisted superionic conductivity[J]. Batteries Supercap, 2022, 5(9): e202200163. |
[49] | Yan Y G, Grinderslev J B, Jo̷rgensen M, Skov L N, Skibsted J R, Jensen T R. Ammine magnesium borohydride nanocomposites for all-solid-state magnesium batteries[J]. ACS Appl. Energy Mater., 2020, 3(9): 9264-9270. |
[50] | Yan Y G, Grinderslev J B, Burankova T, Wei S H, Embs J P, Skibsted J, Jensen T R. Fast room-temperature Mg2+ conductivity in Mg (BH4)2 1.6NH3-Al2O3 nanocomposites[J]. J. Phys. Chem. Lett., 2022, 13(9): 2211-2216. |
[51] | Wu D Z, Zhuang Y C, Wang F, Yang Y, Zeng J, Zhao J B. High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies[J]. Nano Res., 2023, 16(4): 4880-4887. |
[52] |
Wu D Z, Wen Z P, Jiang H B, Li H, Zhuang Y C, Li J Y, Yang Y, Zeng J, Cheng J, Zhao J B. Ultralong-lifespan magnesium batteries enabled by the synergetic manipulation of oxygen vacancies and electronic conduction[J]. ACS Appl. Mater. Interface, 2021, 13(10): 12049-12058.
doi: 10.1021/acsami.1c00170 pmid: 33666088 |
[53] | Song Y L, Yang L Y, Li J, Zhang M Z, Wang Y H, Li S N, Chen S M, Yang K, Xu K, Pan F. Synergistic dissociation‐and‐trapping effect to promote Li‐ion conduction in polymer electrolytes via oxygen vacancies[J]. Small, 2021, 17(42): 2102039. |
[54] | Chen H, Adekoya D, Hencz L, Ma J, Chen S, Yan C, Zhao H, Cui G, Zhang S. Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high‐rate and high-voltage all-solid-state battery[J]. Adv. Energy Mater., 2020, 10(21): 2000049. |
[55] | Wang L P, Zhao K Z, Klein F, Chable J, Braun T, Schür A R, Wang C R, Guo Y G, Fichtner M. MgSc2Se4—A magnesium solid ionic conductor for all‐solid‐state mg batteries?[J]. ChemSusChem, 2019, 12(10): 2286-2293. |
[56] | Tang W S, Dimitrievska M, Stavila V, Zhou W, Wu H, Talin A A, Udovic T J. Order-disorder transitions and superionic conductivity in the sodium nido-undeca(carba)borates[J]. Chem. Mater., 2017, 29(24): 10496-10509. |
[57] | Brighi M, Murgia F, Černý R. Closo-hydroborate sodium salts as an emerging class of room-temperature solid electrolytes[J]. Cell Rep. Phys. Sci., 2020, 1(10): 100217. |
[58] | Liu H X, Zhou X, Ye M X, Shen J F. Ion migration mechanism study of hydroborate/carborate electrolytes for all-solid-state batteries[J]. Electrochem. Energy Rev., 2023, 6(1): 31. |
[59] | Sharma M, Sethio D, Lawson Daku L V M, Hagemann H. Theoretical study of halogenated B12HnX(12-n)2-(X= F, Cl, Br)[J]. J. Phys. Chem. A, 2019, 123(9): 1807-1813. |
[60] | Li S H, Qiu P T, Kang J X, Shi Z P, Zhang Y C, Ma Y M, Chen X N. Halogenated sodium/lithium monocarba-closo-decaborates: Synthese, characterization, and solid-state ionic conductivity[J]. Mater. Chem. Front., 2021, 5(22): 8037-8046. |
[61] | Fang H, Jena P. B12(SCN)12-: An ultrastable weakly coordinating dianion[J]. J. Phys. Chem. C, 2017, 121(14): 7697-7702. |
[62] | Hansen B R, Paskevicius M, Jørgensen M, Jensen T R. Halogenated sodium-closo-dodecaboranes as solid-state ion conductors[J]. Chem. Mater., 2017, 29(8): 3423-3430. |
[63] | Zhang Z Z, Nazar L F. Exploiting the paddle-wheel mechanism for the design of fast ion conductors[J]. Nat. Rev. Mater., 2022, 7(5): 389-405. |
[64] | Berger A, Ibrahim A, Buckley C E, Paskevicius M. Divalent closo-monocarborane solvates for solid-state ionic conductors[J]. Phys. Chem. Chem. Phys, 2023, 25(7): 5758-5775. |
[65] |
Kisu K, Kim S, Shinohara T, Zhao K, Züttel A, Orimo S I. Monocarborane cluster as a stable fluorine-free calcium battery electrolyte[J]. Sci. Rep., 2021, 11(1): 7563.
doi: 10.1038/s41598-021-86938-0 pmid: 33824357 |
[66] | Duchêne L, Kühnel R, S, Stilp E, Reyes E C, Remhof A, Hagemann H, Battaglia C. A stable 3 V all-solid-state sodium-ion battery based on a closo-borate electrolyte[J]. Nat. Commun., 2017, 10(12): 2609-2615. |
[67] | Sun J, Kang S, Kim J, Min K. Accelerated discovery of novel garnet-type solid-state electrolyte candidates via machine learning[J]. ACS Appl. Mater. Interfaces, 2023, 15(4): 5049-5057. |
[68] | Kim J, Kang S, Min K. Screening platform for promising Na superionic conductors for Na-ion solid-state electrolytes[J]. ACS Appl. Mater. Interfaces, 2023, 15(35): 41417-41425. |
[69] | Zhang Z W, Chu J C, Zhang H F, Liu X Y, He M G. Mining ionic conductivity descriptors of antiperovskite electrolytes for all-solid-state batteries via machine learning[J]. J. Energy Storage, 2024, 75: 109714. |
[70] | Wan Z J, Chen X Z, Zhou Z Q, Zhong X L, Luo X B, Xu D W. Atom substitution of the solid-state electrolyte Li10GeP2S12 for stabilized all-solid-state lithium metal batteries[J]. J. Energy Chem., 2024, 88: 28-38. |
[71] | Keck J. Variational theory of reaction rates[J]. Adv. Chem. Phys., 1967, 13: 85-121. |
[72] | Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000, 113(22): 9901-9904. |
[73] | Chen H M, Wong L L, Adams S. SoftBV—a software tool for screening the materials genome of inorganic fast ion conductors[J]. Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat., 2019, 75(1): 18-33. |
[74] | Campos D S E, Sato R, Kisu K, Sau K, Jia X, Yang F, Orimo S I, Li H. Explore the ionic conductivity trends on B12H12 divalent closo-type complex hydride electrolytes[J]. Chem. Mater., 2023, 35(15): 5996-6004. |
[75] | Mori K, Enjuji K, Murata S, Shibata K, Kawakita Y, Yonemura M, Onodera Y, Fukunaga T. Direct observation of fast lithium-ion diffusion in a superionic conductor: Li7P3S11 metastable crystal[J]. Phys. Rev. Appl., 2015, 4(5): 054008. |
[76] | Soloninin A V, Dimitrievska M, Skoryunov R V, Babanova O A, Skripov A V, Tang W S, Stavila V, Orimo S I, Udovic T J. Comparison of anion reorientational dynamics in MCB9H10 and M2B10H10 (M = Li, Na) via nuclear magnetic resonance and quasielastic neutron scattering studies[J]. J. Phys. Chem. C, 2017, 121(2): 1000-1012. |
[77] | Duchêne L, Lunghammer S, Burankova T, Liao W-C, Embs J P, Copéret C, Wilkening H M R, Remhof A, Hagemann H, Battaglia C. Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: interplay of disorder and ion-ion interactions[J]. Chem. Mater., 2019, 31(9): 3449-3460. |
[78] | Payandeh S H, Asakura R, Avramidou P, Rentsch D, Łodziana Z, Cerny R, Remhof A, Battaglia C. Nido-Borate/Closo-Borate mixed-anion electrolytes for all-solid-state batteries[J]. Chem. Mater., 2020, 32(3): 1101-1110. |
[79] | Lundberg S M, Lee S I. A unified approach to interpreting model predictions[M]// Advances in Neural Information Processing Systems, Neural Information Processing Systems (NIPS), California 92037 USA 2017, 30. |
[80] | Friedman J H. Multivariate adaptive regression splines[J]. Ann. Stat., 1991, 19(1): 1-67. |
[81] | Raschka S. MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack[J]. Journal of Open Source Software, 2018, 3(24): 638. |
[82] | Kim J H, Jun B, Jang Y J, Choi S H, Choi S H, Cho S M, Kim Y G, Kim B H, Lee S U. Highly reliable and large-scale simulations of promising argyrodite solid-state electrolytes using a machine-learned moment tensor potential[J]. Nano Energy, 2024, 124: 109436. |
[83] | Li J, Zhou M S, Wu H H, Wang L F, Zhang J, Wu N T, Pan K M, Liu G L, Zhang Y G, Han J J, Liu X M, Chen X, Wan J Y, Zhang Q B. Machine learning-assisted property prediction of solid-state electrolyte[J]. Adv. Energy Mater., 2024: 2304480. |
[84] | Zheng Z Y, Zhou J, Zhu Y S. Computational approach inspired advancements of solid-state electrolytes for lithium secondary batteries: from first-principles to machine learning[J]. Chem. Soc. Rev., 2024, 53: 3134-3166. |
[85] | Sendek A D, Yang Q, Cubuk E D, Duerloo K A N, Cui Y, Reed E. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials[J]. Energy Environmental Science, 2017, 10(1): 306-320. |
[86] |
Heere M, Hansen A L, Payandeh S H, Aslan N, Gizer G, Sørby M H, Hauback B C, Pistidda C, Dornheim M, Lohstroh W. Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors[J]. Sci. Rep., 2020, 10(1): 9080.
doi: 10.1038/s41598-020-65857-6 pmid: 32493958 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||