[1] |
Sato N. Electrochemistry at metal and semiconductor electrodes[M]. America: Elsevier Science, 1998: 119-199.
|
[2] |
Le J, Cuesta A, Cheng J. The structure of metal-water interface at the potential of zero charge from density functional theory-based molecular dynamics[J]. J. Electroanal. Chem., 2018, 819: 87-94.
doi: 10.1016/j.jelechem.2017.09.002
URL
|
[3] |
Le J, Iannuzzi M, Cuesta A, Cheng J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics[J]. Phys. Rev. Lett., 2017, 119(1): 016801.
doi: 10.1103/PhysRevLett.119.016801
URL
|
[4] |
Le J B, Chen A, Li L, Xiong J F, Lan J, Liu Y P, Iannuzzi M, Cheng J. Modeling electrified Pt(111)-had/water interfaces from ab initio molecular dynamics[J]. JACS Au, 2021, 1(5): 569-577.
doi: 10.1021/jacsau.1c00108
URL
|
[5] |
Le J B, Fan Q Y, Li J Q, Cheng J. Molecular origin of negative component of helmholtz capacitance at electrified pt(111)/water interface[J]. Sci. Adv., 2020, 6(41): eabb1219.
doi: 10.1126/sciadv.abb1219
URL
|
[6] |
Li C Y, Le J B, Wang Y H, Chen S, Yang Z L, Li J F, Cheng J, Tian Z Q. In situ probing electrified interfacial water structures at atomically flat surfaces[J]. Nat. Mater., 2019, 18(7): 697-701.
doi: 10.1038/s41563-019-0356-x
|
[7] |
Ledezma-Yanez I, Wallace W D Z, Sebastián-Pascual P, Climent V, Feliu J M, Koper M T M. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes[J]. Nat. Energy, 2017, 2(4): 17031.
doi: 10.1038/nenergy.2017.31
|
[8] |
Memming R. Semiconductor electrochemistry, 2nd edition[M]. America: Wiley-VCH Verlag Gmbh, 2018.
|
[9] |
Cheng J, Sprik M. Alignment of electronic energy levels at electrochemical interfaces[J]. Phys. Chem. Chem. Phys., 2012, 14(32): 11245-11267.
doi: 10.1039/c2cp41652b
pmid: 22806244
|
[10] |
Jia M, Zhang C, Cheng J. Origin of asymmetric electric double layers at electrified oxide/electrolyte interfaces[J]. J. Phys. Chem. Lett., 2021, 12(19): 4616-4622.
doi: 10.1021/acs.jpclett.1c00775
pmid: 33973792
|
[11] |
Zhang C, Hutter J, Sprik M. Coupling of surface chemistry and electric double layer at TiO2 electrochemical interfaces[J]. J. Phys. Chem. Lett., 2019, 10(14): 3871-3876.
doi: 10.1021/acs.jpclett.9b01355
pmid: 31241948
|
[12] |
Cheng J, Liu X D, VandeVondele J, Sulpizi M, Sprik M. Redox potentials and acidity constants from density functional theory based molecular dynamics[J]. Accounts Chem. Res., 2014, 47(12): 3522-3529.
doi: 10.1021/ar500268y
pmid: 25365148
|
[13] |
Cheng J, Sulpizi M, Sprik M. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics[J]. J. Chem. Phys., 2009, 131(15): 154504.
doi: 10.1063/1.3250438
URL
|
[14] |
Costanzo F, Sulpizi M, Valle R G D, Sprik M. The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode[J]. J. Chem. Phys., 2011, 134(24): 244508.
doi: 10.1063/1.3597603
URL
|
[15] |
Guo Z, Ambrosio F, Chen W, Gono P, Pasquarello A. Alignment of redox levels at semiconductor-water interfaces[J]. Chem. Mater., 2018, 30(1): 94-111.
doi: 10.1021/acs.chemmater.7b02619
URL
|
[16] |
Pham T A, Lee D, Schwegler E, Galli G. Interfacial effects on the band edges of functionalized Si surfaces in liquid water[J]. J. Am. Chem. Soc., 2014, 136(49): 17071-17077.
doi: 10.1021/ja5079865
pmid: 25402590
|
[17] |
Cheng J, Sprik M. Aligning electronic energy levels at the TiO2/H2O interface[J]. Phys. Rev. B, 2010, 82(8): 081406.
doi: 10.1103/PhysRevB.82.081406
URL
|
[18] |
Kühne T D, Iannuzzi M, Ben M D, Rybkin V V, Seewald P, Stein F, Laino T, Khaliullin R Z, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian M H, Weber V, Borštnik U, Taillefumier M, Jakobovits A S, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter G K, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. Cp2k: An electronic structure and molecular dynamics software package-quickstep: Efficient and accurate electronic structure calculations[J]. J. Chem. Phys., 2020, 152(19): 194103.
doi: 10.1063/5.0007045
URL
|
[19] |
VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases[J]. J. Chem. Phys., 2007, 127(11): 114105.
doi: 10.1063/1.2770708
URL
|
[20] |
Goedecker S, Teter M, Hutter J. Separable dual-space gaussian pseudopotentials[J]. Phys. Rev. B, 1995, 54(3): 1703-1710.
doi: 10.1103/PhysRevB.54.1703
URL
|
[21] |
Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals[J]. Theor. Chem. Acc., 2005, 114(1-3): 145-152.
doi: 10.1007/s00214-005-0655-y
URL
|
[22] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
[23] |
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comput. Chem., 2011, 32(7): 1456-1465.
doi: 10.1002/jcc.21759
pmid: 21370243
|
[24] |
Nosé S. A molecular dynamics method for simulations in the canonical ensemble[J]. Mol. Phys., 1984, 52(2): 255-268.
doi: 10.1080/00268978400101201
URL
|
[25] |
Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J]. J. Chem. Phys., 1984, 81(1): 511-519.
|
[26] |
VandeVondele J, Mohamed F, Krack M, Hutter J, Sprik M, Parrinello M. The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water[J]. J. Chem. Phys., 2005, 122(1): 014515.
doi: 10.1063/1.1828433
URL
|
[27] |
Li X Y, Chen A, Yang X H, Zhu J X, Le J B, Cheng J. Linear correlation between water adsorption energies and volta potential differences for metal/water interfaces[J]. J. Phys. Chem. Lett., 2021, 12(30): 7299-7304.
doi: 10.1021/acs.jpclett.1c02001
URL
|
[28] |
Łukomska A, Sobkowski J. Potential of zero charge of monocrystalline copper electrodes in perchlorate solutions[J]. J. Electroanal. Chem., 2004, 567(1): 95-102.
doi: 10.1016/j.jelechem.2003.11.063
URL
|
[29] |
Cheng J, Sprik M. The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation[J]. J. Phys. Condens. Matter., 2014, 26(24): 244108.
doi: 10.1088/0953-8984/26/24/244108
URL
|
[30] |
Bogdanova N F, Klebanov A V, Ermakova L E, Sidorova M P, Aleksandrov D A. Adsorption of ions on the surface of tin dioxide and its electrokinetic characteristics in 1 : 1 electrolyte solutions[J]. Colloid. Journal., 2004, 66(4): 409-417.
doi: 10.1023/B:COLL.0000037445.08721.85
URL
|
[31] |
Bandara J, Pradeep U W. Tuning of the flat-band potentials of nanocrystalline TiO2 and SnO2 particles with an outer-shell mgo layer[J]. Thin Solid Films, 2008, 517(2): 952-956.
doi: 10.1016/j.tsf.2008.07.031
URL
|