电化学(中英文) ›› 2023, Vol. 29 ›› Issue (7): 2205301. doi: 10.13208/j.electrochem.2205301
所属专题: “电催化和燃料电池”专题文章
郑天龙a, 欧明玉b, 徐松a, 毛信表b,*(), 王释一a, 和庆钢a,*()
收稿日期:
2022-05-30
修回日期:
2022-06-29
接受日期:
2022-07-14
出版日期:
2023-07-28
发布日期:
2022-07-20
通讯作者:
* Tel:(86-571)88813899, E-mail: 作者简介:
#郑天龙、欧明玉、徐松对于此工作具有同等贡献
基金资助:
Tian-Long Zhenga, Ming-Yu Oub, Song Xua, Xin-Biao Maob,*(), Shi-Yi Wanga, Qing-Gang Hea,*()
Received:
2022-05-30
Revised:
2022-06-29
Accepted:
2022-07-14
Published:
2023-07-28
Online:
2022-07-20
摘要:
双功能氧催化剂的催化活性及稳定性是决定一体式可再生燃料电池能否高效运作的关键因素之一。得益于分别对于氧还原及氧析出反应特定中间产物适当的结合能,铂与铱、钌及其氧化物所制成的贵金属催化剂,常被应用于一体式可再生燃料电池中作为双功能氧催化剂。同时,近年来对于非铂族双功能氧催化剂的研究也取得了较大进展。本篇综述从一体式可再生燃料电池中氧还原及氧析出反应的作用机理出发,首先着重对传统铂基双功能催化剂的构效关系进行了总结,其次介绍了钙钛矿型、尖晶石型氧化物、非金属等新型双功能氧催化剂的发展趋势。此外,本文对于该研究领域所存在的限制条件和发展路线也进行了总结与展望。
郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301.
Tian-Long Zheng, Ming-Yu Ou, Song Xu, Xin-Biao Mao, Shi-Yi Wang, Qing-Gang He. Recent Progress of Bifunctional Electrocatalysts for Oxygen Electrodes in Unitized Regenerative Fuel Cells[J]. Journal of Electrochemistry, 2023, 29(7): 2205301.
表1
部分Pt基双功能氧催化剂的制备、形貌特征与催化性能
Electrocatalyst | Preparation method | Performance | Structure feature | Ref |
---|---|---|---|---|
Pt/Ir3(IrO2)7 | Microwave-assisted polyol process | ORR (21.71 mA·mg-1 at 0.85 V), OER(42.35 mA·mg-1 at 1.55 V) | The introduction of Ir into IrO2 support improves electronic conductivity and the overall performance | [ |
Ir@Pt nanodendrites | Impregnation-reduction method | Higher ORR/OER activity than the mixture of Ir and Pt blacks | Good dispersion of Pt, interaction between Pt and Ir, and special morphology of Ir@Pt nanodendrites | [ |
Pt/porous-IrO2 | Microwave-assisted polyol process | ORR: 2.3 times that of Pt/com-IrO2, OER: 28% higher than Pt/com-IrO2 | The porous IrO2 provides internal and external sites for Pt deposition | [ |
Pt@Ir black | Galvanic replacement | ORR: mass activity of 373.3 mA·mgPt-1 (2.6 times that of Pt black), OER: comparable performance with Ir black | Good dispersion of Pt nanodots on Ir black and the synergistic effect between the Pt and underlying Ir atoms | [ |
Ir@Pt-nanorods | Polyol method | ORR stability>Pt nanorods, OER stability <Ir | Good dispersion of Ir nanodots on Pt nanorods | [ |
PtIr/Ti4O7 | Impregnation-reduction method | Higher ORR and OER performance than Pt/C and Pt/Ti4O7 | Formation of PtIr alloy phase, highly stable Ti4O7 support in an acid medium, and interaction between catalyst and support | [ |
表2
部分文献报道的尖晶石双功能氧催化剂
Electrocatalyst | Preparation method | Performance | Structure features | Ref. |
---|---|---|---|---|
meso-Co3O4 | Hard template method | ηORR =623 mV (-3 mA·cm-2) and ηOER=411 mV (10 mA·cm-2) | High surface area and gyroid network structure in the ordered mesoporous Co3O4 | [ |
Co3O4 nanochains | Cobalt oxalate pyrolysis | ORR: E1/2=0.84 V (<Pt/C 20 mV), ηOER=320 mV (0.5 mA·cm-2); higher ORR stability than Pt/C | Surface octahedral Co3+ site for OER, Co2+ (tetrahedral sites) for ORR | [ |
NiCo2O4 ultrathin nanosheets | Coprecipitation method | ORR: Eonset=0.85 V OER: ηonset=340 mV; ΔE, increase of 0.14 V (after 29 h durability test) | The oxygen vacancies promote the reactivity of active sites, and the ultrathin structure increases the number of active sites | [ |
Dual-Phase MnCo2O4/ CNTs | Hydrothermal method | Comparable ORR activity, superior OER activity and higher stability with regard to Pt/C | Synergic covalent coupling between nanocarbons and MnCo2O4 facilitating charge transfer | [ |
3D hierarchical porous CoFe2O4, hollow nanospheres | Hydrothermal method | ORR: E1/2(CoFe2O4)<E1/2(Pt/C) ca. 180 mV, ηOER=440 mV (10 mA·cm-2); higher ORR/OER stability than Pt/C | 3D hierarchical porous structure | [ |
表3
部分非金属双功能氧催化剂的制备与催化性能
Electrocatalyst | Preparation method | Performance | Structure feature | Ref. |
---|---|---|---|---|
P-doped carbon nanosheets (2D-PPCN) | Multifunctional template method | Comparable ORR and OER activities to those of Pt/C and Ir/C, respectively; superior durability to that of Pt/C+Ir/C | 20-35-nm-thick 2D morphology, P-doping, and porosity tunability | [ |
P,N Co-doped graphene frameworks (PNGF) | One-pot hydrothermal method | ΔE=705 mV (Pt/C+Ir/C:769 mV); almost zero change in overpotential after 5000 cycles | Intensifying the P-N sites for OER and N-doped sites for ORR | [ |
Defect-enriched and pyridinic-N dominated graphene nanosheets (DN-CP@G) | In situ exfoliating graphene from carbon paper and PN dopants | Comparable ORR and OER activities to those of Pt/C and Ir/C, respectively; superior durability to that of Pt/C+Ir/C | Abundant defective sites and active PN dopants, interconnected graphitic carbon fiber core | [ |
3D P,S co-doped carbon nitride sponges (P,S-CNS) | Polymerization and pyrolysis of aminoguanidine | ORR: Eonset=0.97 V, superior to Pt/C, OER: E=1.56 V (10 mA·cm-2), comparable to RuO2; good ORR/OER stability within 210 h | 3D P,S co-doped carbon nitride and efficient mass/charge transfer | [ |
Carbon fiber@porous carbon cloth (o-CC-H2) | High-temperature H2 etching method | OER: E= 1.618 V (10 mA·cm-2), ORR peak potential is 0.565 V; good ORR/OER stability after 900 cycles (9 h) | Carbon fibers coated by defects enriched porous graphene nanosheet skin. | [ |
[1] |
Wang Y J, Zhao N, Fang B, Li H, Bi X T, Wang H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity[J]. Chem. Rev., 2015, 115(9): 3433-3467.
doi: 10.1021/cr500519c URL |
[2] |
Xiong X L, Chen W H, Wang W, Li J, Chen S L. Pt-Pd nanodendrites as oxygen reduction catalyst in polymer-electrolyte-membrane fuel cell[J]. Int. J. Hydrog. Energy, 2017, 42(40): 25234-25243.
doi: 10.1016/j.ijhydene.2017.08.162 URL |
[3] |
Renzi M, Agostini M, Navarra M A, Nobili F. An innovative membrane-electrode assembly for efficient and durable polymer electrolyte membrane fuel cell operations[J]. Int. J. Hydrog. Energy, 2017, 42(26): 16686-16694.
doi: 10.1016/j.ijhydene.2017.05.168 URL |
[4] |
Guerrero Moreno N, Cisneros Molina M, Gervasio D, Pérez Robles J F. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost[J]. Renew. Sust. Energ. Rev., 2015, 52: 897-906.
doi: 10.1016/j.rser.2015.07.157 URL |
[5] |
Ahmed F, Sutradhar S C, Ryu T, Jang H, Choi K, Yang H, Yoon S, Rahman M M, Kim W. Comparative study of sulfonated branched and linear poly(phenylene)s polymer electrolyte membranes for fuel cells[J]. Int. J. Hydrog. Energy, 2018, 43(10): 5374-5385.
doi: 10.1016/j.ijhydene.2017.08.175 URL |
[6] |
Sadhasivam T, Palanisamy G, Roh S H, Kurkuri M D, Kim S C, Jung H Y. Electro-analytical performance of bifunctional electrocatalyst materials in unitized regenerative fuel cell system[J]. Int. J. Hydrog. Energy, 2018, 43(39): 18169-18184.
doi: 10.1016/j.ijhydene.2018.08.035 URL |
[7] |
Sui S, Wang X Y, Zhou X T, Su Y H, Riffatc S, Liu C J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells[J]. J. Mater. Chem. A, 2017, 5(5): 1808-1825.
doi: 10.1039/C6TA08580F URL |
[8] |
Kulkarni A, Siahrostami S, Patel A, Norskov J K. Understanding catalytic activity trends in the oxygen reduction reaction[J]. Chem. Rev., 2018, 118(5): 2302-2312.
doi: 10.1021/acs.chemrev.7b00488 pmid: 29405702 |
[9] |
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martinez J I, Inoglu N G, Kitchin J, Jaramillo T F, Norskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
doi: 10.1002/cctc.v3.7 URL |
[10] |
Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Norskov J K. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1-2): 83-89.
doi: 10.1016/j.jelechem.2006.11.008 URL |
[11] |
Calle-Vallejo F, Martinez J I, Rossmeisl J. Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions[J]. Phys. Chem. Chem. Phys., 2011, 13(34): 15639-15643.
doi: 10.1039/c1cp21228a pmid: 21796295 |
[12] |
Fei H, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland A I, Duan X, Huang Y. General synthesis and definitive structural identification of Mn4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat. Catal., 2018, 1(1): 63-72.
doi: 10.1038/s41929-017-0008-y |
[13] |
Doyle A D, Montoya J H, Vojvodic A. Improving oxygen electrochemistry through nanoscopic confinement[J]. ChemCatChem, 2015, 7(5): 738-742.
doi: 10.1002/cctc.v7.5 URL |
[14] |
Busch M, Halck N B, Kramm U I, Siahrostami S, Krtil P, Rossmeisl J. Beyond the top of the volcano? - a unified approach to electrocatalytic oxygen reduction and oxygen evolution[J]. Nano Energy, 2016, 29: 126-135.
doi: 10.1016/j.nanoen.2016.04.011 URL |
[15] |
She S X, Zhu Y L, Chen Y B, Lu Q, Zhou W, Shao Z P. Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites[J]. Adv. Energy Mater., 2019, 9(20): 1900429.
doi: 10.1002/aenm.v9.20 URL |
[16] |
Halck N B, Petrykin V, Krtil P, Rossmeisl J. Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction[J]. Phys. Chem. Chem. Phys., 2014, 16(27): 13682-13688.
doi: 10.1039/C4CP00571F URL |
[17] |
Wang Y F, Leung D Y C, Xuan J, Wang H Z. A review on unitized regenerative fuel cell technologies, Part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell[J]. Renew. Sust. Energ. Rev., 2017, 75: 775-795.
doi: 10.1016/j.rser.2016.11.054 URL |
[18] |
Wang X Q, Li Z J, Qu Y T, Yuan T W, Wang W Y, Wu Y, Li Y D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design[J]. Chem, 2019, 5(6): 1486-1511.
doi: 10.1016/j.chempr.2019.03.002 URL |
[19] |
Chen G Y, Delafuente D A, Sarangapani S, Mallouk T E. Combinatorial discovery of bifunctional oxygen reduction - water oxidation electrocatalysts for regenerative fuel cells[J]. Catal. Today, 2001, 67(4): 341-355.
doi: 10.1016/S0920-5861(01)00327-3 URL |
[20] |
da Silva G C, Fernandes M R, Ticianelli E A. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions[J]. ACS Catal., 2018, 8(3): 2081-2092.
doi: 10.1021/acscatal.7b03429 URL |
[21] |
Kong F D, Zhang S, Yin G P, Zhang N, Wang Z B, Du C Y. Preparation of Pt/Irx(IrO2)10-x bifunctional oxygen Catalyst for unitized regenerative fuel cell[J]. J. Power Sources, 2012, 210: 321-326.
doi: 10.1016/j.jpowsour.2012.02.021 URL |
[22] |
Zhang G, Shao Z G, Lu W T, Li G F, Liu F Q, Yi B L. One-pot synthesis of Ir@Pt nanodendrites as highly active bifunctional electrocatalysts for oxygen reduction and oxygen evolution in acidic medium[J]. Electrochem. Commun., 2012, 22: 145-148.
doi: 10.1016/j.elecom.2012.05.030 URL |
[23] |
Kong F D, Zhang S, Yin G P, Zhang N, Wang Z B, Du C Y. Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell[J]. Electrochem. Commun., 2012, 14(1): 63-66.
doi: 10.1016/j.elecom.2011.11.002 URL |
[24] |
Fang D H, Tang X J, Yang L M, Xu D Y, Zhang H J, Sun S C, Shao Z G, Yi B L. Facile synthesis of Pt-decorated Ir black as a bifunctional oxygen catalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2019, 11(18): 9091-9102.
doi: 10.1039/c9nr00279k pmid: 31026011 |
[25] |
Gutsche C, Moeller C J, Knipper M, Borchert H, Parisi J, Plaggenborg T. Synthesis, structure, and electrochemical stability of Ir-decorated RuO2 nanoparticles and Pt nanorods as oxygen catalysts[J]. J. Phys. Chem. C, 2016, 120(2): 1137-1146.
doi: 10.1021/acs.jpcc.5b11437 URL |
[26] |
Won J E, Kwak D H, Han S B, Park H S, Park J Y, Ma K B, Kim D H, Park K W. PtIr/Ti4O7 as a bifunctional electrocatalyst for improved oxygen reduction and oxygen evolution reactions[J]. J. Catal., 2018, 358: 287-294.
doi: 10.1016/j.jcat.2017.12.013 URL |
[27] |
da Silva G C, Mayrhofer K J J, Ticianelli E A, Cherevko S. The degradation of Pt/IrOx oxygen bifunctional catalysts[J]. Electrochim. Acta, 2019, 308: 400-409.
doi: 10.1016/j.electacta.2019.04.017 URL |
[28] |
Chen D J, Chen C, Baiyee Z M, Shao Z P, Ciucci F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices[J]. Chem. Rev., 2015, 115(18): 9869-9921.
doi: 10.1021/acs.chemrev.5b00073 pmid: 26367275 |
[29] |
Jörissen L. Bifunctional oxygen/air electrodes[J]. J. Power Sources, 2006, 155(1): 23-32.
doi: 10.1016/j.jpowsour.2005.07.038 URL |
[30] |
Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media[J]. Chem. Asian J., 2016, 11(1): 10-21.
doi: 10.1002/asia.v11.1 URL |
[31] |
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles[J]. Science, 2011, 334(6061): 1383-1385.
doi: 10.1126/science.1212858 pmid: 22033519 |
[32] |
Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nat. Chem., 2011, 3(7): 546-550.
doi: 10.1038/nchem.1069 pmid: 21697876 |
[33] |
Zhang D W, Song Y F, Du Z Z, Wang L, Li Y T, Goodenough J B. Active Lani1-XFexO3 bifunctional catalysts for air cathodes in alkaline media[J]. J. Mater. Chem. A, 2015, 3(18): 9421-9426.
doi: 10.1039/C5TA01005E URL |
[34] |
Lopez K, Park G, Sun H J, An J C, Eom S, Shim J. Electrochemical characterizations of LaMo3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1-xO3 (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution[J]. J. Appl. Electrochem., 2015, 45(4): 313-323.
doi: 10.1007/s10800-015-0798-z URL |
[35] |
Grimaud A, May K J, Carlton C E, Lee Y L, Risch M, Hong W T, Zhou J, Shao-Horn Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution[J]. Nat. Commun., 2013, 4(1): 2439.
doi: 10.1038/ncomms3439 |
[36] |
Jung J I, Risch M, Park S, Kim M G, Nam G, Jeong H Y, Shao-Horn Y, Cho J. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis[J]. Energy Environ. Sci., 2016, 9(1): 176-183.
doi: 10.1039/C5EE03124A URL |
[37] |
Lee Y L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy Environ. Sci., 2011, 4(10): 3966-3970.
doi: 10.1039/c1ee02032c URL |
[38] |
Tarancón A, Burriel M, Santiso J, Skinner S J, Kilner J A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J. Mater. Chem., 2010, 20(19): 3799-3813.
doi: 10.1039/b922430k URL |
[39] |
Zhuang S X, Zhang H A, Liu S Q, Tu F Y, Zhang W X, Zhao C Z. Optimized perovskite electrocatalyst for bifunctional air electrode by impedance spectroscopy analysis[J]. Int. J. Electrochem. Sci., 2014, 9(4): 1690-1701.
doi: 10.1016/S1452-3981(23)07883-5 URL |
[40] |
Soares C O, Carvalho M D, Jorge M E M, Gomes A, Silva R A, Rangel C M, Pereira M I D. High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media[J]. J. Appl. Electrochem., 2012, 42(5): 325-332.
doi: 10.1007/s10800-012-0399-z URL |
[41] |
Takeguchi T, Yamanaka T, Takahashi H, Watanabe H, Kuroki T, Nakanishi H, Orikasa Y, Uchimoto Y, Takano H, Ohguri N, Matsuda M, Murota T, Uosaki K, Ueda W. Layered perovskite oxide: A reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries[J]. J. Am. Chem. Soc., 2013, 135(30): 11125-11130.
doi: 10.1021/ja403476v pmid: 23802735 |
[42] |
Wei C, Feng Z, Scherer G G, Barber J, Shao-Horn Y, Xu Z J. Cations in octahedral sites: A descriptor for oxygen electrocatalysis on transition-metal spinels[J]. Adv. Mater., 2017, 29(23): 1606800.
doi: 10.1002/adma.v29.23 URL |
[43] |
Hu Y, Chen H Q, Zhang X M, Wen W, He Q G, He C H. Systematic study of the electronic, carbon, and N-doping effects of comn-oxide composites as bifunctional oxygen electrocatalysts[J]. J. Phys. Chem. C, 2019, 123(36): 22130-22138.
doi: 10.1021/acs.jpcc.9b03208 URL |
[44] |
Li AL, Kong S, Guo C X, Ooka H, Adachi K, Hashizume D, Jiang Q K, Han H X, Xiao J P, Nakamura R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nat. Catal., 2022, 5(2): 109-118.
doi: 10.1038/s41929-021-00732-9 |
[45] | Zhou Y, Sun S, Song J, Xi S, Chen B, Du Y, Fisher A C, Cheng F, Wang X, Zhang H, Xu Z J. Enlarged CoO covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction[J]. Adv. Mater., 2018, 30(32): e1802912. |
[46] |
Cheng F Y, Shen J A, Peng B, Pan Y D, Tao Z L, Chen J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat. Chem., 2011, 3(1): 79-84.
doi: 10.1038/nchem.931 pmid: 21160522 |
[47] |
Serov A, Andersen N I, Roy A J, Matanovic I, Artyushkova K, Atanassov P. CuCo2O4 ORR/OER bi-functional catalyst: influence of synthetic approach on performance[J]. J. Electrochem. Soc., 2015, 162(4): F449-F454.
doi: 10.1149/2.0921504jes URL |
[48] |
Sa Y J, Kwon K, Cheon J Y, Kleitz F, Joo S H. Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts[J]. J. Mater. Chem. A, 2013, 1(34): 9992-10001.
doi: 10.1039/c3ta11917c URL |
[49] |
Menezes P W, Indra A, Gonzalez-Flores D, Sahraie N R, Zaharieva I, Schwarze M, Strasser P, Dau H, Driess M. High-performance oxygen redox catalysis with multifunctional cobalt oxide nanochains: Morphology-dependent activity[J]. ACS Catal., 2015, 5(4): 2017-2027.
doi: 10.1021/cs501724v URL |
[50] |
Liu W J, Bao J, Xu L, Guan M L, Wang Z L, Qiu J X, Huang Y P, Xia J X, Lei Y C, Li H M. NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery[J]. Appl. Surf. Sci., 2019, 478: 552-559.
doi: 10.1016/j.apsusc.2019.01.243 URL |
[51] |
Ge X, Liu Y, Goh F W T, Hor T S A, Zong Y, Xiao P, Zhang Z, Lim S H, Li B, Wang X, Liu Z. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution[J]. ACS Appl. Mater. Interfaces, 2014, 6(15): 12684-12691.
doi: 10.1021/am502675c URL |
[52] |
Xu Y, Bian W, Wu J, Tian J H, Yang R. Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for oxygen reduction reaction and oxygen evolution reaction[J]. Electrochim. Acta, 2015, 151: 276-283.
doi: 10.1016/j.electacta.2014.11.042 URL |
[53] |
Fu Y, Yu H Y, Jiang C, Zhang T H, Zhan R, Li X, Li J F, Tian J H, Yang R. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst[J]. Adv. Funct. Mater., 2018, 28(9): 1705094.
doi: 10.1002/adfm.v28.9 URL |
[54] |
Fu G T, Cui Z M, Chen Y F, Xu L, Tang Y W, Goodenough J B. Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery[J]. Nano Energy, 2017, 39: 77-85.
doi: 10.1016/j.nanoen.2017.06.029 URL |
[55] |
Fu J, Hassan F M, Zhong C, Lu J, Liu H, Yu A P, Chen Z W. Defect engineering of chalcogen-tailored oxygen electrocatalysts for rechargeable quasi-solid-state zinc-air batteries[J]. Adv. Mater., 2017, 29(35): 1702526.
doi: 10.1002/adma.v29.35 URL |
[56] |
Wang Q, Shang L, Shi R, Zhang X, Zhao Y, Waterhouse G I N, Wu L Z, Tung C H, Zhang T. NiFe layered double hydroxide nanoparticles on Co,N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries[J]. Adv. Energy Mater., 2017, 7(21): 1700467.
doi: 10.1002/aenm.201700467 URL |
[57] |
An L, Li Y, Luo M, Yin J, Zhao Y Q, Xu C, Cheng F, Yang Y, Xi P, Guo S. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries[J]. Adv. Funct. Mater., 2017, 27(42): 1703779.
doi: 10.1002/adfm.v27.42 URL |
[58] |
Patel P P, Datta M K, Velikokhatnyi O I, Kuruba R, Damodaran K, Jampani P, Gattu B, Shanthi P M, Damle S S, Kumta P N. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts[J]. Sci. Rep., 2016, 6(1): 28367.
doi: 10.1038/srep28367 |
[59] |
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849.
doi: 10.1038/s41467-019-12886-z pmid: 31649237 |
[60] |
Xiao M L, Gao L Q, Wang Y, Wang X, Zhu J B, Jin Z, Liu C P, Chen H Q, Li G R, Ge J J, He Q G, Wu Z J, Chen Z W, Xing W. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis[J]. J. Am. Chem. Soc., 2019, 141(50): 19800-19806.
doi: 10.1021/jacs.9b09234 pmid: 31763837 |
[61] |
Xiao Y, Tang L. High-throughput approach exploitation: Two-dimensional double-metal sulfide (M2S2) of efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Energy Fuels, 2020, 34(4): 5006-5015.
doi: 10.1021/acs.energyfuels.0c00297 URL |
[62] |
Haber J A, Cai Y, Jung S, Xiang C, Mitrovic S, Jin J, Bell A T, Gregoire J M. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis[J]. Energy Environ. Sci., 2014, 7(2): 682-688.
doi: 10.1039/C3EE43683G URL |
[63] |
Liu J Y, Liu H, Chen H J, Du X W, Zhang B, Hong Z L, Sun S H, Wang W C. Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach[J]. Adv. Sci., 2020, 7(1): 1901614.
doi: 10.1002/advs.v7.1 URL |
[64] |
Dai L, Xue Y, Qu L, Choi H J, Baek J B. Metal-free catalysts for oxygen reduction reaction[J]. Chem. Rev., 2015, 115(11): 4823-4892.
doi: 10.1021/cr5003563 pmid: 25938707 |
[65] |
Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P. Heteroatom-doped graphene materials: Syntheses, properties and applications[J]. Chem. Soc. Rev., 2014, 43(20): 7067-7098.
doi: 10.1039/c4cs00141a pmid: 24954470 |
[66] |
He J, Zheng T L, Wu D J, Zhang S M, Gu M, He Q G. Insights into the determining effect of carbon support properties on anchoring active sites in Fe-N-C catalysts toward the oxygen reduction reaction[J]. ACS Catal., 2022, 12(3): 1601-1613.
doi: 10.1021/acscatal.1c04815 URL |
[67] |
Liu X, Dai L M. Carbon-based metal-free catalysts[J]. Nat. Rev. Mater., 2016, 1(11): 16064.
doi: 10.1038/natrevmats.2016.64 |
[68] |
Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao S Z. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566.
doi: 10.1002/smll.201200861 pmid: 22893586 |
[69] |
Zhang S G, Tsuzuki S, Ueno K, Dokko K, Watanabe M. Upper limit of nitrogen content in carbon materials[J]. Angew. Chem. Int. Edit., 2015, 54(4): 1302-1306.
doi: 10.1002/anie.201410234 URL |
[70] |
Niu W H, Li Z, Marcus K, Zhou L, Li Y L, Ye R Q, Liang K, Yang Y. surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air batteries[J]. Adv. Energy Mater., 2018, 8(1): 1701642.
doi: 10.1002/aenm.v8.1 URL |
[71] |
El-Sawy A M, Mosa I M, Su D, Guild C J, Khalid S, Joesten R, Rusling J F, Suib S L. Controlling the active sites of sulfur-doped carbon nanotube-graphene nanolobes for highly efficient oxygen evolution and reduction catalysis[J]. Adv. Energy Mater., 2016, 6(5): 1501966.
doi: 10.1002/aenm.201501966 URL |
[72] |
Lei W, Deng Y P, Li G R, Cano Z P, Wang X L, Luo D, Liu Y S, Wang D L, Chen Z W. Two-dimensional phosphorus-doped carbon nanosheets with tunable porosity for oxygen reactions in zinc-air batteries[J]. ACS Catal., 2018, 8(3): 2464-2472.
doi: 10.1021/acscatal.7b02739 URL |
[73] | Patil I M, Lokanathan M, Ganesan B, Swami A, Kakade B. Carbon nanotube/boron nitride nanocomposite as a significant bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Chemistry, 2017, 23(3): 676-683. |
[74] |
Zhang J T, Zhao Z H, Xia Z H, Dai L M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nat. Nanotechnol., 2015, 10(5): 444-452.
doi: 10.1038/nnano.2015.48 pmid: 25849787 |
[75] |
Chai G L, Qiu K P, Qiao M, Titirici M M, Shang C X, Guo Z X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene frameworks[J]. Energy Environ. Sci., 2017, 10(5): 1186-1195.
doi: 10.1039/C6EE03446B URL |
[76] |
Zhao Z H, Li M T, Zhang L P, Dai L M, Xia Z H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries[J]. Adv. Mater., 2015, 27(43): 6834-6840.
doi: 10.1002/adma.201503211 |
[77] |
Hang C, Zhang J, Zhu J W, Li W Q, Kou Z K, Huang Y H. In situ exfoliating and generating active sites on graphene nanosheets strongly coupled with carbon fiber toward self-standing bifunctional cathode for rechargeable Zn-air batteries[J]. Adv. Energy Mater., 2018, 8(16): 1703539.
doi: 10.1002/aenm.v8.16 URL |
[78] |
Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries[J]. ACS Nano, 2017, 11(1): 347-357.
doi: 10.1021/acsnano.6b05914 pmid: 28001038 |
[79] | Wang H F, Tang C, Wang B, Li B Q, Cui X Y, Zhang Q. Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc-air batteries[J]. Energy Storage Mater., 2018, 15: 124-130. |
[80] |
Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Adv. Mater., 2017, 29(13): 1604103.
doi: 10.1002/adma.201604103 URL |
[81] |
Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B, Zhang Q, Titirici M M, Wei F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis[J]. Adv. Mater., 2016, 28(32): 6845-6851.
doi: 10.1002/adma.201601406 URL |
[82] |
Bajdich M, Garcia-Mota M, Vojvodic A, Norskov J K, Bell A T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water[J]. J. Am. Chem. Soc., 2013, 135(36): 13521-13530.
doi: 10.1021/ja405997s pmid: 23944254 |
[83] |
Diaz-Morales O, Ledezma-Yanez I, Koper M T M, Calle-Vallejo F. Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction[J]. ACS Catal., 2015, 5(9): 5380-5387.
doi: 10.1021/acscatal.5b01638 URL |
[84] |
Fan K, Chen H, Ji Y F, Huang H, Claesson P M, Daniel Q, Philippe B, Rensmo H, Li F S, Luo Y, Sun L C. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation[J]. Nat. Commun., 2016, 7(1): 11981.
doi: 10.1038/ncomms11981 |
[85] |
Jiang J, Sun F F, Zhou S, Hu W, Zhang H, Dong J C, Jiang Z, Zhao J J, Li J F, Yan W S, Wang M. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium Co-doped nickel (Oxy)hydroxide[J]. Nat. Commun., 2018, 9(1): 2885.
doi: 10.1038/s41467-018-05341-y pmid: 30038335 |
[86] |
Liao P, Keith J A, Carter E A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis[J]. J. Am. Chem. Soc., 2012, 134(32): 13296-13309.
doi: 10.1021/ja301567f pmid: 22788792 |
[87] |
Ye S H, Shi Z X, Feng J X, Tong Y X, Li G R. Activating coooh porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(10): 2672-2676.
doi: 10.1002/anie.201712549 URL |
[88] |
Kuznetsov D A, Han B, Yu Y, Rao R R, Hwang J, Roman-Leshkov Y, Shao-Horn Y. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis[J]. Joule, 2018, 2(2): 225-244.
doi: 10.1016/j.joule.2017.11.014 URL |
[89] |
Chen D, Qiao M, Lu Y R, Hao L, Liu D, Dong C L, Li Y, Wang S. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(28): 8691-8696.
doi: 10.1002/anie.201805520 pmid: 29771458 |
[90] |
Ling T, Yan D Y, Jiao Y, Wang H, Zheng Y, Zheng X, Mao J, Du X W, Hu Z, Jaroniec M, Qiao S Z. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis[J]. Nat. Commun., 2016, 7(1): 12876.
doi: 10.1038/ncomms12876 |
[91] |
Nguyen T, Piccinin S, Seriani N, Gebauer R. Photo-oxidation of water on defective hematite(0001)[J]. ACS Catal., 2015, 5(2): 715-721.
doi: 10.1021/cs5017326 URL |
[92] |
Niether C, Faure S, Bordet A, Deseure J, Chatenet M, Carrey J, Chaudret B, Rouet A. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nat. Energy, 2018, 3(6): 476-483.
doi: 10.1038/s41560-018-0132-1 |
[93] |
Guo C, Zheng Y, Ran J, Xie F, Jaroniec M, Qiao S Z. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis[J]. Angew. Chem. Int. Ed., 2017, 56(29): 8539-8543.
doi: 10.1002/anie.201701531 pmid: 28338264 |
[94] |
Ng J W D, Garcia-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo T F. Gold-supported cerium-doped niox catalysts for water oxidation[J]. Nat. Energy, 2016, 1(5): 16053.
doi: 10.1038/nenergy.2016.53 |
[95] |
Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
doi: 10.1126/science.aaf5050 URL |
[96] |
Wang J, Li K, Zhong H X, Xu D, Wang Z L, Jiang Z, Wu Z J, Zhang X B. Synergistic effect between metal-nitrogen-carbon sheets and NiO nanoparticles for enhanced electrochemical water-oxidation performance[J]. Angew. Chem. Int. Ed., 2015, 54(36): 10530-10534.
doi: 10.1002/anie.201504358 pmid: 26218453 |
[1] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[2] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[3] | 倪静, 施兆平, 王显, 王意波, 吴鸿翔, 刘长鹏, 葛君杰, 邢巍. 低铱酸性氧析出电催化剂的研究进展[J]. 电化学(中英文), 2022, 28(9): 2214010-. |
[4] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[5] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[6] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[7] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
[8] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
[9] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
[10] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[11] | 徐明俊, 刘杰, 葛君杰, 刘长鹏, 邢巍. 长春应化所金属氮碳氧还原催化剂的研究进展[J]. 电化学(中英文), 2020, 26(4): 464-473. |
[12] | 徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学(中英文), 2020, 26(4): 531-562. |
[13] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[14] | 梁 栋, 房恒义, 姚 硕, 于洁玫, 张昭良, 姜占坤, 高学平, 黄太仲. 不同结构及氮掺杂NiO/rGO氧还原催化剂的制备与性能研究[J]. 电化学(中英文), 2019, 25(5): 589-600. |
[15] | 张利华, 陈峻峰, 黄皖唐, 胡勇有, 程建华, 陈元彩. Cu-bipy-BTC衍生碳基材料的制备及其氧还原电催化性能[J]. 电化学(中英文), 2019, 25(4): 511-521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||