电化学(中英文) ›› 2023, Vol. 29 ›› Issue (6): 2218001. doi: 10.13208/j.electrochem.2218001
所属专题: “电分析”专题文章
胡琼*(), 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利*()
收稿日期:
2022-08-05
修回日期:
2022-09-08
接受日期:
2022-09-15
出版日期:
2023-06-28
发布日期:
2022-09-19
Qiong Hu*(), Shi-Qi Li, Yi-Yi Liang, Wen-Xing Feng, Yi-Lin Luo, Xiao-Jing Cao, Li Niu*()
Received:
2022-08-05
Revised:
2022-09-08
Accepted:
2022-09-15
Published:
2023-06-28
Online:
2022-09-19
Contact:
*Tel: (86)15850560755; E-mail: 摘要:
癌胚抗原(CEA)是一种酸性糖蛋白,其作为一种广谱肿瘤标志物在恶性肿瘤的鉴别诊断与监测等方面具有重要价值。在此,借助于硼酸盐亲和辅助电化学调控原子转移自由基聚合(BA-eATRP)的双重信号放大作用,我们报道了一种电化学适体传感器,用于CEA的超灵敏、高选择性检测。基于BA-eATRP的电化学CEA适体传感的基本原理为:待核酸适体捕获CEA抗原后,借助于苯硼酸(PBA)基团与单糖残基上的顺式二醇基团间的选择性亲和相互作用将ATRP引发剂位点靶向性地共价偶联到CEA抗原上;随后,以二茂铁甲基丙烯酸甲酯(FcMMA)作为单体,借助于eATRP将二茂铁(Fc)探针引入电极表面。由于CEA上含有数百个顺式二醇基团,基于硼酸盐亲和的交联反应可使得在每个CEA抗原上标记数百个ATRP引发剂分子。此外,通过eATRP反应,可以在电极表面接枝长的二茂铁基聚合物链,使得每个标记有ATRP引发剂的位点均能连接上成百上千个Fc探针。因此,BA-eATRP可使得每个CEA抗原上标记上大量的Fc探针。在最佳条件下,基于BA-eATRP的电化学适体传感器能够实现浓度低为0.34 pg·mL-1的CEA的高选择性检测,其线性范围为1.0-1000 pg·mL-1。而且,该适体传感器可用于人血清中CEA的定量分析。基于BA-eATRP的电化学适体传感器具有成本低廉、操作简便等优良特性,在CEA的超灵敏、高选择性检测方面具有广阔的应用前景。
胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001.
Qiong Hu, Shi-Qi Li, Yi-Yi Liang, Wen-Xing Feng, Yi-Lin Luo, Xiao-Jing Cao, Li Niu. Boronate Affinity-Assisted Electrochemically Controlled ATRP for Ultrasensitive Electrochemical Aptasensing of Carcinoembryonic Antigen[J]. Journal of Electrochemistry, 2023, 29(6): 2218001.
[1] |
Fletcher R H. Carcinoembryonic antigen[J]. Ann. Intern. Med., 1986, 104(1): 66-73.
doi: 10.7326/0003-4819-104-1-66 pmid: 3510056 |
[2] |
Hall C, Clarke L, Pal A, Buchwald P, Eglinton T, Wakeman C, Frizelle F. A review of the role of carcinoembryonic antigen in clinical practice[J]. Ann. Coloproctol., 2019, 35(6): 294-305.
doi: 10.3393/ac.2019.11.13 pmid: 31937069 |
[3] |
Benchimol S, Fuks A, Jothy S, Beauchemin N, Shirota K, Stanners C P. Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion molecule[J]. Cell, 1989, 57(2): 327-334.
doi: 10.1016/0092-8674(89)90970-7 pmid: 2702691 |
[4] |
Huang L T, Zeng Y Y, Liu X L, Tang D P. Pressure-based immunoassays with versatile electronic sensors for carcinoembryonic antigen detection[J]. ACS Appl. Mater. Interfaces, 2021, 13(39): 46440-46450.
doi: 10.1021/acsami.1c16514 URL |
[5] |
Qiu Z L, Shu J, Tang D P. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper[J]. Anal. Chem., 2017, 89(9): 5152-5160.
doi: 10.1021/acs.analchem.7b00989 pmid: 28376620 |
[6] |
Yu Q L, Wang X, Duan Y X. Capillary-based three-dimensional immunosensor assembly for high-performance detection of carcinoembryonic antigen using laser-induced fluorescence spectrometry[J]. Anal. Chem., 2014, 86(3): 1518-1524.
doi: 10.1021/ac402973n pmid: 24417246 |
[7] |
Xing T Y, Zhao J, Weng G J, Zhu J, Li J J, Zhao J W. Specific detection of carcinoembryonic antigen based on fluorescence quenching of hollow porous gold nanoshells with roughened surface[J]. ACS Appl. Mater. Interfaces, 2017, 9(42): 36632-36641.
doi: 10.1021/acsami.7b11310 URL |
[8] |
Fan G C, Zhu H, Du D, Zhang J R, Zhu J J, Lin Y. Enhanced photoelectrochemical immunosensing platform based on CdSeTe@CdS:Mn core-shell quantum dots-sensitized TiO2 amplified by CuS nanocrystals conjugated signal antibodies[J]. Anal. Chem., 2016, 88(6): 3392-3399.
doi: 10.1021/acs.analchem.6b00144 URL |
[9] |
Guan X X, Deng X X, Song J, Wang X Y, Wu S. Polydopamine with tailorable photoelectrochemical activities for the highly sensitive immunoassay of tumor markers[J]. Anal. Chem., 2021, 93(17): 6763-6769.
doi: 10.1021/acs.analchem.1c00504 pmid: 33877814 |
[10] |
Li J J, Zhang Y, Kuang X, Wang Z L, Wei Q. A network signal amplification strategy of ultrasensitive photoelectrochemical immunosensing carcinoembryonic antigen based on CdSe/melamine network as label[J]. Biosens. Bioelectron., 2016, 85: 764-770.
doi: S0956-5663(16)30523-1 pmid: 27281106 |
[11] |
Carneiro M C, Sousa-Castillo A, Correa-Duarte M A, Sales M G F. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen[J]. Biosens. Bioelectron., 2019, 146: 111761.
doi: 10.1016/j.bios.2019.111761 URL |
[12] |
Chon H, Lee S, Son S W, Oh C H, Choo J. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres[J]. Anal. Chem., 2009, 81(8): 3029-3034.
doi: 10.1021/ac802722c pmid: 19301845 |
[13] |
Wang J, Cao Y, Xu Y Y, Li G X. Colorimetric multiplexed immunoassay for sequential detection of tumor markers[J]. Biosens. Bioelectron., 2009, 25(2): 532-536.
doi: 10.1016/j.bios.2009.08.010 pmid: 19726177 |
[14] |
Zhao L J, Wang J, Su D D, Zhang Y Y, Lu H Y, Yan X, Bai J, Gao Y, Lu G Y. The DNA controllable peroxidase mimetic activity of MoS2 nanosheets for constructing a robust colorimetric biosensor[J]. Nanoscale, 2020, 12(37): 19420-19428.
doi: 10.1039/D0NR05649A URL |
[15] |
Zhou Y, Chen S H, Luo X L, Chai Y Q, Yuan R. Ternary electrochemiluminescence nanostructure of Au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers[J]. Anal. Chem., 2018, 90(16): 10024-10030.
doi: 10.1021/acs.analchem.8b02642 pmid: 30047729 |
[16] |
Wang N N, Feng Y Q, Wang Y W, Ju H X, Yan F. Electrochemiluminescent imaging for multi-immunoassay sensitized by dual DNA amplification of polymer dot signal[J]. Anal. Chem., 2018, 90(12): 7708-7714.
doi: 10.1021/acs.analchem.8b01610 pmid: 29847924 |
[17] |
Yang L, Zhu W, Ren X, Khan M S, Zhang Y, Du B, Wei Q. Macroporous graphene capped Fe3O4 for amplified electrochemiluminescence immunosensing of carcinoembryonic antigen detection based on CeO2@TiO2[J]. Biosens. Bioelectron., 2017, 91: 842-848.
doi: S0956-5663(17)30056-8 pmid: 28157658 |
[18] |
Wu M S, Shi H W, He L J, Xu J J, Chen H Y. Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer[J]. Anal. Chem., 2012, 84(9): 4207-4213.
doi: 10.1021/ac300551e URL |
[19] |
Gu X, She Z, Ma T, Tian S, Kraatz H B. Electrochemical detection of carcinoembryonic antigen[J]. Biosens. Bioelectron., 2018, 102: 610-616.
doi: S0956-5663(17)30811-4 pmid: 29247972 |
[20] |
Ji Y L, Guo J X, Ye B X, Peng G H, Zhang C, Zou L N. An ultrasensitive carcinoembryonic antigen electrochemical aptasensor based on 3D DNA nanoprobe and Exo III[J]. Biosens. Bioelectron., 2022, 196: 113741.
doi: 10.1016/j.bios.2021.113741 URL |
[21] |
Liang H H, Luo Y, Li Y Y, Song Y H, Wang L. An immunosensor using electroactive COF as signal probe for electrochemical detection of carcinoembryonic antigen[J]. Anal. Chem., 2022, 94(13): 5352-5358.
doi: 10.1021/acs.analchem.1c05426 URL |
[22] |
Hu Q, Ma K F, Mei Y Q, He M H, Kong J M, Zhang X J. Metal-to-ligand charge-transfer: Applications to visual detection of β-galactosidase activity and sandwich immunoassay[J]. Talanta, 2017, 167: 253-259.
doi: 10.1016/j.talanta.2017.02.027 URL |
[23] |
Wang D F, Li Y Y, Lin Z Y, Qiu B, Guo L H. Surface-enhanced electrochemiluminescence of Ru@SiO2 for ultrasensitive detection of carcinoembryonic antigen[J]. Anal. Chem., 2015, 87(12): 5966-5972.
doi: 10.1021/acs.analchem.5b01038 URL |
[24] |
Qi J, Li B W, Zhou N, Wang X Y, Deng D M, Luo L Q, Chen L X. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device[J]. Biosens. Bioelectron., 2019, 142: 111533.
doi: 10.1016/j.bios.2019.111533 URL |
[25] |
Liu Z, Lei S, Zou L N, Li G P, Xu L L, Ye B X. A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay[J]. Biosens. Bioelectron., 2019, 131: 113-118.
doi: S0956-5663(19)30122-8 pmid: 30826645 |
[26] |
Li J, Xu L Q, Shen Y J, Guo L, Yin H, Fang X H, Yang Z J, Xu Q, Li H B. Superparamagnetic nanostructures for split-type and competitive-mode photoelectrochemical aptasensing[J]. Anal. Chem., 2020, 92(12): 8607-8613.
doi: 10.1021/acs.analchem.0c01831 pmid: 32393021 |
[27] |
Zeng X X, Ma S S, Bao J C, Tu W W, Dai Z H. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing[J]. Anal. Chem., 2013, 85(24): 11720-11724.
doi: 10.1021/ac403408y pmid: 24256069 |
[28] |
Zhang Y H, Li M J, Wang H J, Yuan R, Wei S P. Supersensitive photoelectrochemical aptasensor based on Br,N-codoped TiO2 sensitized by quantum dots[J]. Anal. Chem., 2019, 91(16): 10864-10869.
doi: 10.1021/acs.analchem.9b02600 URL |
[29] |
Ma C, Liu H Y, Zhang L N, Li H, Yan M, Song X R, Yu J H. Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru(NH3)63+ electronic wires[J]. Biosens. Bioelectron., 2018, 99: 8-13.
doi: 10.1016/j.bios.2017.07.031 URL |
[30] |
Yang H Q, Xu Y, Hou Q Q, Xu Q Z, Ding C F. Magnetic antifouling material based ratiometric electrochemical biosensor for the accurate detection of CEA in clinical serum[J]. Biosens. Bioelectron., 2022, 208: 114216.
doi: 10.1016/j.bios.2022.114216 URL |
[31] |
Zhai X J, Wang Q L, Cui H F, Song X, Lv Q Y, Guo Y. A DNAzyme-catalyzed label-free aptasensor based on multifunctional dendrimer-like DNA assembly for sensitive detection of carcinoembryonic antigen[J]. Biosens. Bioelectron., 2021, 194: 113618.
doi: 10.1016/j.bios.2021.113618 URL |
[32] |
Wang Q L, Cui H F, Song X, Fan S F, Chen L L, Li M M, Li Z Y. A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen[J]. Sens. Actuators, B, 2018, 260: 48-54.
doi: 10.1016/j.snb.2017.12.105 URL |
[33] |
Paniagua G, Villalonga A, Eguílaz M, Vegas B, Parrado C, Rivas G, Díez P, Villalonga R. Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element[J]. Anal. Chim. Acta, 2019, 1061: 84-91.
doi: S0003-2670(19)30189-8 pmid: 30926042 |
[34] |
Guo C P, Su F F, Song Y P, Hu B, Wang M H, He L H, Peng D L, Zhang Z H. Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen[J]. ACS Appl. Mater. Interfaces, 2017, 9(47): 41188-41199.
doi: 10.1021/acsami.7b14952 URL |
[35] |
Wu Y F, Liu S Q, He L. Electrochemical biosensing using amplification-by-polymerization[J]. Anal. Chem., 2009, 81(16): 7015-7021.
doi: 10.1021/ac9011254 pmid: 19583218 |
[36] |
Yuan L, Wei W, Liu S Q. Label-free electrochemical immunosensors based on surface-initiated atom radical polymerization[J]. Biosens. Bioelectron., 2012, 38(1): 79-85.
doi: 10.1016/j.bios.2012.05.007 pmid: 22766469 |
[37] |
He P, Zheng W, Tucker E Z, Gorman C B, He L. Reversible addition-fragmentation chain transfer polymerization in DNA biosensing[J]. Anal. Chem., 2008, 80(10): 3633-3639.
doi: 10.1021/ac702608k pmid: 18416564 |
[38] |
Hu Q, Han D X, Gan S Y, Bao Y, Niu, L. Surface-initiated-reversible-addition-fragmentation-chain-transfer polymerization for electrochemical DNA biosensing[J]. Anal. Chem., 2018, 90(20): 12207-12213.
doi: 10.1021/acs.analchem.8b03416 pmid: 30265519 |
[39] |
Wu Y F, Wei W, Liu S Q. Target-triggered polymerization for biosensing[J]. Acc. Chem. Res., 2012, 45(9): 1441-1450.
doi: 10.1021/ar200310f URL |
[40] |
Hu Q, Gan S Y, Bao Y, Zhang Y W, Han D X, Niu L. Controlled/“living” radical polymerization-based signal amplification strategies for biosensing[J]. J. Mater. Chem. B, 2020, 8(16): 3327-3340.
doi: 10.1039/C9TB02419K URL |
[41] |
Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes[J]. J. Am. Chem. Soc., 1995, 117(20): 5614-5615.
doi: 10.1021/ja00125a035 URL |
[42] |
Magenau A J, Strandwitz N C, Gennaro A, Matyjaszewski K. Electrochemically mediated atom transfer radical polymerization[J]. Science, 2011, 332(6025): 81-84.
doi: 10.1126/science.1202357 pmid: 21454784 |
[43] |
Hu Q, Wang Q W, Sun G Z, Kong J M, Zhang X J. Electrochemically mediated surface-initiated de novo growth of polymers for amplified electrochemical detection of DNA[J]. Anal. Chem., 2017, 89(17): 9253-9259.
doi: 10.1021/acs.analchem.7b02039 pmid: 28806877 |
[44] |
Hu Q, Gan S Y, Bao Y, Zhang Y W, Han D X, Niu L. Electrochemically controlled ATRP for cleavage-based electrochemical detection of the prostate-specific antigen at femtomolar level concentrations[J]. Anal. Chem., 2020, 92(24): 15982-15988.
doi: 10.1021/acs.analchem.0c03467 pmid: 33225684 |
[45] |
Hu Q, Hu S H, Li S Q, Liu S J, Liang Y Y, Cao X J, Luo Y L, Xu W J, Wang H C, Wan J W, Feng W X, Niu L. Boronate affinity-based electrochemical aptasensor for point-of-care glycoprotein detection[J]. Anal. Chem., 2022, 94(28), 10206-10212.
doi: 10.1021/acs.analchem.2c01699 pmid: 35793076 |
[46] |
Hu Q, Wan J W, Wang H C, Cao X J, Li S Q, Liang Y Y, Luo Y L, Wang W, Niu L. Boronate-affinity cross-linking-based ratiometric electrochemical detection of glycoconjugates[J]. Anal. Chem., 2022, 94(26), 9481-9486.
doi: 10.1021/acs.analchem.2c01959 pmid: 35727688 |
[47] |
Hu Q, Su L F, Chen Z H, Huang Y Y, Qin D D, Niu L. Coenzyme-mediated electro-RAFT polymerization for amplified electrochemical interrogation of trypsin activity[J]. Anal. Chem., 2021, 93(27): 9602-9608.
doi: 10.1021/acs.analchem.1c01766 URL |
[48] |
Hu Q, Su L F, Luo Y L, Cao X J, Hu S H, Li S Q, Liang Y Y, Liu S J, Xu W J, Qin D D, Niu L. Biologically mediated RAFT polymerization for electrochemical sensing of kinase activity[J]. Anal. Chem., 2022, 94(16): 6200-6205.
doi: 10.1021/acs.analchem.1c05587 pmid: 35426653 |
[49] |
Fu Z F, Liu H, Ju H X. Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers[J]. Anal. Chem., 2006, 78(19): 6999-7005.
pmid: 17007526 |
[50] |
Zhou L L, Wang Y J, Xing R R, Chen J, Liu J, Li W, Liu Z. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins[J]. Biosens. Bioelectron., 2019, 145: 111729.
doi: 10.1016/j.bios.2019.111729 URL |
[51] |
Wu X, Li Z, Chen X X, Fossey J S, James T D, Jiang Y B. Selective sensing of saccharides using simple boronic acids and their aggregates[J]. Chem. Soc. Rev., 2013, 42(20): 8032-8048.
doi: 10.1039/c3cs60148j pmid: 23860576 |
[52] |
Zhang W, Liu W, Li P, Xiao H B, Wang H, Tang B. A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity[J]. Angew. Chem. Int. Ed., 2014, 53(46): 12489-12493.
doi: 10.1002/anie.201405634 pmid: 25214064 |
[53] |
Li D J, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: Structure, properties and applications[J]. Chem. Soc. Rev., 2015, 44(22): 8097-8123.
doi: 10.1039/c5cs00013k pmid: 26377373 |
[54] |
Ye J, Chen Y, Liu Z. A boronate affinity sandwich assay: An appealing alternative to immunoassays for the determination of glycoproteins[J]. Angew. Chem. Int. Ed., 2014, 53(39): 10386-10389.
doi: 10.1002/anie.201405525 pmid: 25088356 |
[55] |
Wu L L, Wang Y D, Xu X, Liu Y L, Lin B Q, Zhang M X, Zhang J L, Wan S, Yang C Y, Tan W H. Aptamer-based detection of circulating targets for precision medicine[J]. Chem. Rev., 2021, 121(19): 12035-12105.
doi: 10.1021/acs.chemrev.0c01140 pmid: 33667075 |
[56] |
Tan W, Donovan M J, Jiang J. Aptamers from cell-based selection for bioanalytical applications[J]. Chem. Rev., 2013, 113(4): 2842-2862.
doi: 10.1021/cr300468w pmid: 23509854 |
[57] |
Zhu Z, Song Y, Li C, Zou Y, Zhu L, An Y, Yang C J. Monoclonal surface display SELEX for simple, rapid, efficient, and cost-effective aptamer enrichment and identification[J]. Anal. Chem., 2014, 86(12): 5881-5888.
doi: 10.1021/ac501423g pmid: 24863283 |
[1] | 王海军,肖丽娟,何颖,蒋欣亚,袁亚利,卓颖,柴雅琴,袁若*. 共反应试剂增强电致化学发光信号生物传感器[J]. 电化学(中英文), 2015, 21(1): 13-21. |
[2] | 李玲玲, 卢倩, 朱俊杰. 基于量子点的电致化学发光免疫传感器研究进展[J]. 电化学(中英文), 2013, 19(2): 103-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||