电化学(中英文) ›› 2023, Vol. 29 ›› Issue (3): 2217008. doi: 10.13208/j.electrochem.2217008
所属专题: “下一代二次电池”专题文章
贾欢欢a, 胡晨吉a, 张熠霄a, 陈立桅a,b,c,*()
收稿日期:
2022-09-19
修回日期:
2022-10-10
接受日期:
2022-11-04
出版日期:
2023-03-28
发布日期:
2022-11-07
Huan-Huan Jiaa, Chen-Ji Hua, Yi-Xiao Zhanga, Li-Wei Chena,b,c,*()
Received:
2022-09-19
Revised:
2022-10-10
Accepted:
2022-11-04
Published:
2023-03-28
Online:
2022-11-07
Contact:
*Tel: (86-21)54743179, E-mail: 摘要:
锂硫电池具有超高的理论能量密度(2567 Wh·kg-1),且其实际能量密度最高可达600 Wh·kg-1。然而,液态体系的Li-S电池和传统锂电池一样存在着安全隐患。用固态电解质取代电解液有望提高锂电池的安全性能,在近二十年受到了广泛的研究。对于固态锂硫电池来说,除了由于正极材料本身的不同带来的转化机制上的差别,固态电解质的物理化学性质也会显著影响其电化学行为。这篇综述分类讨论了已报道的不同固态锂硫电池体系在性能上的优缺点及其中主要的失效机制,对其能量密度低、循环稳定性差的原因及改善电池综合性能的策略进行了归纳分析,旨在从固态锂硫电池微观机制到全电池水平的工程化设计提供全面的理解,推动固态锂硫电池的进一步发展。
贾欢欢, 胡晨吉, 张熠霄, 陈立桅. 固态锂硫电池综述:从硫正极转化机制到电池的工程化设计[J]. 电化学(中英文), 2023, 29(3): 2217008.
Huan-Huan Jia, Chen-Ji Hu, Yi-Xiao Zhang, Li-Wei Chen. A Review on Solid-State Li-S Battery: From the Conversion Mechanism of Sulfur to Engineering Design[J]. Journal of Electrochemistry, 2023, 29(3): 2217008.
[1] |
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage[J]. Nat. Mater., 2011, 11(1): 19-29.
doi: 10.1038/nmat3191 |
[2] |
Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nat. Energy, 2022, 7(4): 312-319.
doi: 10.1038/s41560-022-01001-0 |
[3] | Yang X F, Li X, Adair K, Zhang H M, Sun X L. Structural design of lithium-sulfur batteries: From fundamental research to practical application[J]. Electrochem. Energy R., 2018, 1(3): 239-293. |
[4] | Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Adv. Mater., 2019, 31(27): e1901125. |
[5] | Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q, Peng D L. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries[J]. Adv. Sci., 2022, 9(12): e2106004. |
[6] |
Yang X, Luo J, Sun X. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chem. Soc. Rev., 2020, 49(7): 2140-2195.
doi: 10.1039/c9cs00635d pmid: 32118221 |
[7] |
Bonnick P, Muldoon J. The Dr Jekyll and Mr Hyde of lithium sulfur batteries[J]. Energy Environ. Sci., 2020, 13(12): 4808-4833.
doi: 10.1039/D0EE02797A URL |
[8] |
Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Musameh M, Rees R J, Rüther T. Lithium-sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy Environ. Sci., 2014, 7(12): 3902-3920.
doi: 10.1039/C4EE02192D URL |
[9] |
Ding B, Wang J, Fan Z J, Chen S, Lin Q Y, Lu X J, Dou H, Nanjundan A K, Yushin G, Zhang X G, Yamauchi Y. Solid-state lithium-sulfur batteries: Advances, challenges and perspectives[J]. Mater. Today, 2020, 40: 114-131.
doi: 10.1016/j.mattod.2020.05.020 URL |
[10] |
Pan H, Cheng Z, He P, Zhou H S. A review of solid-state lithium-sulfur battery: Ion transport and polysulfide chemistry[J]. Energ. Fuel., 2020, 34(10): 11942-11961.
doi: 10.1021/acs.energyfuels.0c02647 URL |
[11] |
Zheng Y, Yao Y Z, Ou J H, Li M, Luo D, Dou H Z, Li Z Q, Amine K, Yu A P, Chen Z W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem. Soc. Rev., 2020, 49(23): 8790-8839.
doi: 10.1039/d0cs00305k pmid: 33107869 |
[12] | Zhang Q, Cao D X, Ma Y, Natan A, Aurora P, Zhu H L. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries[J]. Adv. Mater., 2019, 31(44): e1901131. |
[13] |
Chen R S, Li Q H, Yu X Q, Chen L Q, Li H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem. Rev., 2020, 120(14): 6820-6877.
doi: 10.1021/acs.chemrev.9b00268 pmid: 31763824 |
[14] |
Li X N, Liang J W, Yang X F, Adair K R, Wang C H, Zhao F P, Sun X L. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ. Sci., 2020, 13(5): 1429-1461.
doi: 10.1039/C9EE03828K URL |
[15] |
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A. A lithium superionic conductor[J]. Nat. Mater., 2011, 10(9): 682-686.
doi: 10.1038/nmat3066 pmid: 21804556 |
[16] |
Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat. Energy, 2016, 1(4): 16030.
doi: 10.1038/nenergy.2016.30 |
[17] |
Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat. Rev. Mater., 2017, 2(4): 16103.
doi: 10.1038/natrevmats.2016.103 |
[18] |
Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwa J P, Wang C S, Xu X X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Adv. Energy Mater., 2017, 7(17): 1602923.
doi: 10.1002/aenm.v7.17 URL |
[19] |
Fang R X, Xu H H, Xu B Y, Li X Y, Li Y T, Goodenough J B. Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte[J]. Adv. Funct. Mater., 2020, 31(2): 2001812.
doi: 10.1002/adfm.v31.2 URL |
[20] |
Liu Y, Liu H W, Lin Y T, Zhao Y X, Yuan H, Su Y P, Zhang J F, Ren S Y, Fan H Y, Zhang Y G. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery[J]. Adv. Funct. Mater., 2021, 31(41): 2104863.
doi: 10.1002/adfm.v31.41 URL |
[21] |
Gao X, Zheng X L, Tsao Y C, Zhang P, Xiao X, Ye Y S, Li J, Yang Y F, Xu R, Bao Z N, Cui Y. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. J. Am. Chem. Soc., 2021, 143(43): 18188-18195.
doi: 10.1021/jacs.1c07754 URL |
[22] |
Gao X, Zheng X, Wang J, Zhang Z, Xiao X, Wan J, Ye Y, Chou L Y, Lee H K, Wang J, Vilá R A, Yang Y, Zhang P, Wang L W, Cui Y. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries[J]. Nano Lett., 2020, 20(7): 5496-5503.
doi: 10.1021/acs.nanolett.0c02033 pmid: 32515973 |
[23] |
Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material[J]. J. Power Sources, 2008, 183(1): 422-426.
doi: 10.1016/j.jpowsour.2008.05.031 URL |
[24] |
Wan H L, Zhang B, Liu S F, Zhang J X, Yao X Y, Wang C S. Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery[J]. Nano Lett., 2021, 21(19): 8488-8494.
doi: 10.1021/acs.nanolett.1c03415 URL |
[25] | Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): 4372. |
[26] |
Machida N, Kobayashi K, Nishikawa Y, Shigematsu T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes[J]. Solid State Ion., 2004, 175(1-4): 247-250.
doi: 10.1016/j.ssi.2003.11.033 URL |
[27] |
Ulissi U, Ito S, Hosseini S M, Varzi A, Aihara Y, Passerini S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites[J]. Adv. Energy Mater., 2018, 8(26): 1801462.
doi: 10.1002/aenm.v8.26 URL |
[28] |
Long P, Xu Q, Peng G, Yao X Y, Xu X X. NiS nanorods as cathode materials for all-solid-state lithium batteries with excellent rate capability and cycling stability[J]. ChemElectroChem, 2016, 3(5): 764-769.
doi: 10.1002/celc.201500570 URL |
[29] | Zhang Q, Ding Z G, Liu G Z, Wan H L, Mwizerwa J P, Wu J H, Yao X Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2019, 23: 168-180. |
[30] |
Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Li H, Chen L Q, Xu X X. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Lett., 2016, 16(11): 7148-7154.
pmid: 27766883 |
[31] |
Shin B R, Nam Y J, Kim J W, Lee Y G, Jung Y S. Interfacial architecture for extra Li+ storage in all-solid-state lithium batteries[J]. Sci. Rep., 2014, 4: 5572.
doi: 10.1038/srep05572 |
[32] |
Wang C H, Adair K R, Liang J W, Li X N, Sun Y P, Li X, Wang J W, Sun Q, Zhao F P, Lin X T, Li R Y, Huang H, Zhang L, Yang R, Lu S G, Sun X L. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries[J]. Adv. Funct. Mater., 2019, 29(26): 1900392.
doi: 10.1002/adfm.v29.26 URL |
[33] |
Wan H L, Liu S F, Deng T, Xu J J, Zhang J X, He X Z, Ji X, Yao X Y, Wang C S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery[J]. ACS Energy Lett., 2021, 6(3): 862-868.
doi: 10.1021/acsenergylett.0c02617 URL |
[34] |
Yi J, Chen L, Liu Y, Geng H, Fan L Z. High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnS2S12 solid electrolyte[J]. ACS Appl. Mater. Interfaces, 2019, 11(40): 36774-36781.
doi: 10.1021/acsami.9b12846 URL |
[35] |
Wan J, Song Y X, Chen W P, Guo H J, Shi Y, Guo Y J, Shi J L, Guo Y G, Jia F F, Wang F Y, Wen R, Wan L J. Micromechanism in all-solid-state alloy-metal batteries: Regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution[J]. J. Am. Chem. Soc., 2021, 143(2): 839-848.
doi: 10.1021/jacs.0c10121 pmid: 33382260 |
[36] |
Wang L, Yin X, Jin C, Lai C, Qu G, Zheng G W. Cathode-supported-electrolyte configuration for high-performance all-solid-state lithium-sulfur batteries[J]. ACS Appl. Energy Mater., 2020, 3(12): 11540-11547.
doi: 10.1021/acsaem.0c02347 URL |
[37] |
Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee H W, Cui Y. Solid-State Lithium-sulfur batteries operated at 37 oC with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Lett., 2017, 17(5): 2967-2972.
doi: 10.1021/acs.nanolett.7b00221 URL |
[38] | Wang Q S, Wen Z Y, Jin J, Guo J, Huang X, Yang J H, Chen C H. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. ChemComm., 2016, 52(8): 1637-1640. |
[39] |
Busche M R, Adelhelm P, Sommer H, Schneider H, Leitner K, Janek J. Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates[J]. J. Power Sources, 2014, 259: 289-299.
doi: 10.1016/j.jpowsour.2014.02.075 URL |
[40] |
Kumaresan K, Mikhaylik Y, White R E. A mathematical model for a lithium-sulfur cell[J]. J. Electrochem. Soc., 2008, 155(8): A576-582.
doi: 10.1149/1.2937304 URL |
[41] | Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969. |
[42] |
Hassoun J, Scrosati B. A high-performance polymer tin sulfur lithium ion battery[J]. Angew. Chem. Int. Ed., 2010, 49(13): 2371-2374.
doi: 10.1002/anie.200907324 pmid: 20191654 |
[43] |
Jeong S S, Lim Y T, Choi Y J, Cho G B, Kim K W, Ahn H J, Cho K K. Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions[J]. J. Power Sources, 2007, 174(2): 745-750.
doi: 10.1016/j.jpowsour.2007.06.108 URL |
[44] |
Kobayashi T, Imade Y, Shishihara D, Homma K, Nagao M, Watanabe R, Yokoi T, Yamada A, Kanno R, Tatsumi T. All solid-state battery with sulfur electrode and thio-lisicon electrolyte[J]. J. Power Sources, 2008, 182(2): 621-625.
doi: 10.1016/j.jpowsour.2008.03.030 URL |
[45] |
Song Y X, Shi Y, Wan J, Lang S Y, Hu X C, Yan H J, Liu B, Guo Y G, Wen R, Wan L J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study[J]. Energy Environ. Sci., 2019, 12(8): 2496-2506.
doi: 10.1039/C9EE00578A URL |
[46] |
Wang L, Yin X, Li B, Zheng G W. Mixed ionically/electronically conductive double-phase interface enhanced solid-state charge transfer for a high-performance all-solid-state Li-S battery[J]. Nano Lett., 2022, 22(1): 433-440.
doi: 10.1021/acs.nanolett.1c04228 URL |
[47] |
Eshetu G G, Judez X, Li C, Martinez-Ibanez M, Gracia I, Bondarchuk O, Carrasco J, Rodriguez-Martinez L M, Zhang H, Armand M. Ultrahigh performance all solid-state lithium sulfur batteries: Salt anion's chemistry-induced anomalous synergistic effect[J]. J. Am. Chem. Soc., 2018, 140(31): 9921-9933.
doi: 10.1021/jacs.8b04612 pmid: 30008214 |
[48] |
Eshetu G G, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez L M, Zhang H, Armand M. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2017, 56(48): 15368-15372.
doi: 10.1002/anie.201709305 pmid: 28994228 |
[49] |
Judez X, Zhang H, Li C, Eshetu G G, Zhang Y, González-Marcos J A, Armand M, Rodriguez-Martinez L M. Polymer-rich composite electrolytes for all-solid-state Li-S cells[J]. J. Phys. Chem. Lett., 2017, 8(15): 3473-3477.
doi: 10.1021/acs.jpclett.7b01321 pmid: 28696704 |
[50] |
Judez X, Zhang H, Li C, Gonzalez-Marcos J A, Zhou Z, Armand M, Rodriguez-Martinez L M. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte for all solid-state Li-S cell[J]. J. Phys. Chem. Lett., 2017, 8(9): 1956-1960.
doi: 10.1021/acs.jpclett.7b00593 pmid: 28407471 |
[51] |
Zhang H, Oteo U, Judez X, Eshetu G G, Martinez-Ibañez M, Carrasco J, Li C, Armand M. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702.
doi: 10.1016/j.joule.2019.05.003 |
[52] |
Chinnam P R, Xu L, Cai L, Cordes N L, Kim S, Efaw C M, Murray D J, Dufek E J, Xu H, Li B. Unlocking failure mechanisms and improvement of practical Li-S pouch cells through in operando pressure study[J]. Adv. Energy Mater., 2021, 12(7): 2103048.
doi: 10.1002/aenm.v12.7 URL |
[53] |
Ohno S, Koerver R, Dewald G, Rosenbach C, Titscher P, Steckermeier D, Kwade A, Janek J, Zeier W G. Observation of chemomechanical failure and the influence of cut off potentials in all-solid-state Li-S batteries[J]. Chem. Mater., 2019, 31(8): 2930-2940.
doi: 10.1021/acs.chemmater.9b00282 URL |
[54] |
Ohno S, Rosenbach C, Dewald G F, Janek J, Zeier W G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate-based composite cathode toward solid-state lithium-sulfur batteries[J]. Adv. Funct. Mater., 2021, 31(18): 2010620.
doi: 10.1002/adfm.v31.18 URL |
[55] |
Lewis J A, Tippens J, Cortes F J Q, McDowell M T. Chemo-mechanical challenges in solid-state batteries[J]. Trends Chem., 2019, 1(9): 845-857.
doi: 10.1016/j.trechm.2019.06.013 URL |
[56] |
Zhao B S, Wang L, Liu S, Li G R, Gao X P. High-efficiency hybrid sulfur cathode based on electroactive niobium tungsten oxide and conductive carbon nanotubes for all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2022, 14(1): 1212-1221.
doi: 10.1021/acsami.1c21573 URL |
[57] |
Jiang M, Liu G, Zhang Q, Zhou D, Yao X. Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2021, 13(16): 18666-18672.
doi: 10.1021/acsami.1c00511 URL |
[58] |
Yamamoto M, Goto S, Tang R, Nomura K, Hayasaka Y, Yoshioka Y, Ito M, Morooka M, Nishihara H, Kyotani T. Nano-confinement of insulating sulfur in the cathode composite of all-solid-State Li-S batteries using flexible carbon materials with large pore volumes[J]. ACS Appl. Mater. Interfaces, 2021, 13(32): 38613-38622.
doi: 10.1021/acsami.1c10275 URL |
[59] |
Yue J, Huang Y L, Liu S F, Chen J, Han F D, Wang C S. Rational designed mixed-conductive sulfur cathodes for all-solid-state lithium batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(32): 36066-36071.
doi: 10.1021/acsami.0c08564 URL |
[60] |
Lin Z, Liu Z C, Dudney N J, Liang C D. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano, 2013, 7(3): 2829-2833.
doi: 10.1021/nn400391h pmid: 23427822 |
[61] |
Han F D, Yue J, Fan X L, Gao T, Luo C, Ma Z H, Suo L M, Wang C S. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Lett., 2016, 16(7): 4521-4527.
doi: 10.1021/acs.nanolett.6b01754 pmid: 27322663 |
[62] |
Yan H F, Wang H C, Wang D H, Li X, Gong Z L, Yang Y. In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Lett., 2019, 19(5): 3280-3287.
doi: 10.1021/acs.nanolett.9b00882 URL |
[63] |
Hakari T, Fujita Y, Deguchi M, Kawasaki Y, Otoyama M, Yoneda Y, Sakuda A, Tatsumisago M, Hayashi A. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries[J]. Adv. Funct. Mater., 2021, 32(5): 2106174.
doi: 10.1002/adfm.v32.5 URL |
[64] |
Jiang Z, Li Z X, Wang X L, Gu C D, Xia X H, Tu J P. Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface[J]. ACS Appl. Mater. Inter., 2021, 13(26): 30739-30745.
doi: 10.1021/acsami.1c07947 URL |
[65] |
Jiang Z, Liang T B, Liu Y, Zhang S Z, Li Z X, Wang D H, Wang X L, Xia X H, Gu C D, Tu J P. Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution[J]. ACS Appl. Mater. Inter., 2020, 12(49): 54662-54670.
doi: 10.1021/acsami.0c15903 URL |
[66] |
Zhou L, Tufail M K, Ahmad N, Song T, Chen R, Yang W. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2021, 13(24): 28270-28280.
doi: 10.1021/acsami.1c06328 URL |
[67] |
Wang S, Zhang Y, Zhang X, Liu T, Lin Y H, Shen Y, Li L, Nan C W. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2018, 10(49): 42279-42285.
doi: 10.1021/acsami.8b15121 URL |
[68] |
Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv. Mater., 2020, 33(6): 2000751.
doi: 10.1002/adma.v33.6 URL |
[69] |
Gao H C, Xue L G, Xin S, Park K, Goodenough J B. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J]. Angew. Chem. Int. Ed., 2017, 56(20): 5541-5545.
doi: 10.1002/anie.201702003 pmid: 28402602 |
[70] |
Chen S J, Zhang J X, Nie L, Hu X C, Huang Y Q, Yu Y, Liu W. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte[J]. Adv. Mater., 2021, 33(1): 2002325.
doi: 10.1002/adma.v33.1 URL |
[71] |
Wang J, Huang G, Chen K, Zhang X B. An adjustable-porosity plastic crystal electrolyte enables high-performance all-solid-state lithium-oxygen batteries[J]. Angew. Chem. Int. Ed., 2020, 59(24): 9382-9387.
doi: 10.1002/anie.202002309 pmid: 32175643 |
[72] |
Alarco P J, Abu-Lebdeh Y, Abouimrane A, Armand M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors[J]. Nat. Mater., 2004, 3(7): 476-481.
doi: 10.1038/nmat1158 |
[73] |
Xu R C, Yue J, Liu S F, Tu J P, Han F D, Liu P, Wang C S. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density[J]. ACS Energy Lett., 2019, 4(5): 1073-1079.
doi: 10.1021/acsenergylett.9b00430 URL |
[74] |
Hao F, Liang Y L, Zhang Y, Chen Z Y, Zhang J B, Ai Q, Guo H, Fan Z, Lou J, Yao Y. High-energy all-solid-state organic-lithium batteries based on ceramic electrolytes[J]. ACS Energy Lett., 2020, 6(1): 201-207.
doi: 10.1021/acsenergylett.0c02227 URL |
[75] | Zhang Y Y, Sun Y L, Peng L F, Yang J Q, Jia H H, Zhang Z R, Shan B, Xie J. Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery[J]. Energy Storage Mater., 2019, 21: 287-296. |
[76] |
Dong D R, Zhou B, Sun Y F, Zhang H, Zhong G M, Dong Q Y, Fu F, Qian H, Lin Z Y, Lu D R, Shen Y B, Wu J H, Chen L W, Chen H W. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries[J]. Nano Lett., 2019, 19(4): 2343-2349.
doi: 10.1021/acs.nanolett.8b05019 pmid: 30856336 |
[77] |
Sun Y F, Zhong G M, Zhao Z, Cao M, Zhou H, Zhang S J, Qian H, Lin Z Y, Lu D R, Wu J H, Chen H W. Polymeric sulfur as a Li ion conductor[J]. Nano Lett., 2020, 20(3): 2191-2196.
doi: 10.1021/acs.nanolett.0c00386 pmid: 32059111 |
[1] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[2] | 李贺, 于申军, 陈志奎, 梁广川, . 锂离子电池内部短路失效的反应机理研究[J]. 电化学(中英文), 2010, 16(2): 185-191. |
[3] | 王均涛;韩严;许立坤;陈光章;刘文法;. Ru-Ir-Ti氧化物阳极正反电流电解失效机理研究[J]. 电化学(中英文), 2005, 11(4): 407-411. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||