电化学(中英文) ›› 2021, Vol. 27 ›› Issue (3): 233-256. doi: 10.13208/j.electrochem.201252
张伟艺1, 马宪印1, 邹受忠2,*(), 蔡文斌1,*()
收稿日期:
2021-02-21
修回日期:
2021-03-26
出版日期:
2021-06-28
发布日期:
2021-04-10
通讯作者:
邹受忠,蔡文斌
E-mail:szou@american.edu;wbcai@fudan.edu.cn
Wei-Yi Zhang1, Xian-Yin Ma1, Shou-Zhong Zou2,*(), Wen-Bin Cai1,*()
Received:
2021-02-21
Revised:
2021-03-26
Published:
2021-06-28
Online:
2021-04-10
Contact:
Shou-Zhong Zou, Wen-Bin Cai
E-mail:szou@american.edu;wbcai@fudan.edu.cn
摘要:
生物柴油工业的蓬勃发展带来大量副产品丙三醇(甘油),因此如何将甘油转化为高附加值产品具有重要的研究价值。在各种方法中, 电催化氧化由于其条件温和、环境友好和高效率而备受关注。然而,甘油的电氧化非常复杂,涉及许多反应途径和多个电子和质子转移过程,如何合理设计对目标产物具有高选择性的催化剂是很大的挑战。在本文中, 我们主要概述了铂和钯基催化剂上甘油电氧化研究的最新进展。我们首先总结了基于原位和在线谱学研究以及理论计算获得的影响其电催化活性和选择性的因素。然后,选择代表性文献来说明这些因素如何应用于研制高效甘油电氧化催化剂。最后,提出了未来研究中要解决的关键问题。
张伟艺, 马宪印, 邹受忠, 蔡文斌. 铂和钯上丙三醇电氧化研究进展:从反应机理到催化材料[J]. 电化学(中英文), 2021, 27(3): 233-256.
Wei-Yi Zhang, Xian-Yin Ma, Shou-Zhong Zou, Wen-Bin Cai. Recent Advances in Glycerol Electrooxidation on Pt and Pd: from Reaction Mechanisms to Catalytic Materials[J]. Journal of Electrochemistry, 2021, 27(3): 233-256.
Figure 5
Reaction pathways proposed for the electrooxidation of glycerol on the bare polycrystalline Pt (Ptp) electrode and after modification by Bi and Pb in alkaline media. Black arrows represent the pathway for the clean Ptp, whereas the green and gray arrows indicate the pathways for the modified electrode. Reproduced with permission[27]. Copyright © 2020, American Chemical Society.
Table 1
Quantitative selectivity of Pt-based electrocatalysts
Catalyst | Electrolyte | Condition | Selectivity | Ref. |
---|---|---|---|---|
Pt9Bi1/C | 2 mol·L-1 glycerol + 0.5 mol·L-1 NaOH | 0.55 V vs. RHE, 4 h, 20 °C | glyceraldehyde 79.6% | [ |
Pt/C | 0.1 mol·L-1 glycerol + 0.5 mol·L-1 H2SO4 | 1.1 V vs. SHE, 7 h, 60 °C | glyceric acid 57.8% | [ |
Pt5Ru5/C | dihydroxyacetone 35.0% | |||
Pt/GNS | 0.5 mol·L-1 glycerol + 0.5 mol·L-1 KOH | 0.2 V vs. SCE, 2 h | glycolate 65.4% | [ |
PtNi/GNS | 0.1 V vs. SCE, 2 h | glycerate 47.7% | ||
PtRuNi/GNS | 0.2 V vs. SCE, 2 h | glyceraldehyde 39.2% | ||
PtRhNi/GNS | -0.4 V vs. SCE, 2 h | oxalate 37.6% | ||
PtAg skeleton | 0.5 mol·L-1 glycerol + 0.5 mol·L-1 KOH | 0.7 V vs. RHE, 2 h | dihydroxyacetone 82.6% | [ |
Pt4Au6@Ag | 0.5 mol·L-1 glycerol + 0.5 mol·L-1 KOH | 1.1 V vs. RHE, 2 h | dihydroxyacetone 77.1% | [ |
PtSb/C | 0.1 mol·L-1 glycerol + 0.5 mol·L-1 H2SO4 | 0.797 V vs. SHE, 10 h, 60 °C | dihydroxyacetone 61.4% | [ |
Pt2Rh1/C | 0.1 mol·L-1 glycerol + 0.1 mol·L-1 HClO4 | 0.45 V vs. SCE, 8 h, 60 °C | tartronic acid ~40% | [ |
P-doped Pt/MCNTs | 0.5 mol·L-1 glycerol + 0.5 mol·L-1 KOH | 0.28 V vs. Ag/AgCl, 1 h | tartronate ~52% | [ |
Figure 9
Infrared spectra recorded for glycerol oxidation on Pt/C, Pt3Pd6Bi1/C, and Pt9Bi1/C catalysts in 0.1 mol·L-1 glycerol + 1.0 mol·L-1 NaOH electrolyte (scan rate = 1 mV·s-1, resolution 4 cm-1, T = 293 K). Reproduced with permission[64]. (color on line) Copyright © 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figure 10
Voltammograms of PtAg skeletons and Pt/C. (A) Cyclic voltammograms (CVs) recorded in 1 mol·L-1 KOH with a scan rate of 50 mV·s-1, (B) linear sweep voltammograms (LSVs) recorded in 0.1 mol·L-1 KOH and 1 mol·L-1 glycerol with a scan rate of 1 mV·s-1 and (C) CVs recorded in 0.1 mol·L-1 KOH + 1 mol·L-1 glycerol with a scan rate of 50 mV·s-1. Both catalysts show a higher current peak in the forward potential scan. Note that the current density of Pt/C was enlarged 5 times. (color on line) Reproduced with permission[81]. Copyright © 2019, American Chemical Society.
Table 2
Quantitative selectivity of Pd-based electro catalysts
Catalyst | Electrolyte | Condition | Selectivity | Ref. |
---|---|---|---|---|
Pd/CNT | 1.0 mol·L-1 glycerol + 6.0 mol·L-1 KOH | 0.2 V vs. SHE, 2 h, 60 °C | tartronate ~60% | [ |
PdAg3/CNT | oxalate 32% | |||
Pd/CNT | 1.0 mol·L-1 glycerol + 4.0 mol·L-1 KOH | 0.1 V vs. SHE, 2 h, 60 °C | tartronate 39.5% | [ |
PdAg3/CNT | oxalate 39.2% | |||
Pd NCs | 0.5 mol·L-1 glycerol + 0.5 mol·L-1 KOH | -0.4 V vs. SCE, 2 h, ambient temperature. | glyceraldehyde 61.2% | [ |
Pt@Pd NCs | glycolate ~40% | |||
PdMn/C | 0.1 mol·L-1 glycerol + 0.1 mol·L-1 NaOH | 0.8 V vs. RHE, 4 h | glycerate ~56% | [ |
P-doped Pd/CNT | 0.5 mol·L-1 glycerol + 0.5 mol·L-1 KOH | -0.13 V vs. Ag/AgCl, 0.5 h | dihydroxyacetone 90.8% | [ |
Pd-CNx/G, | 0.5 mol·L-1 glycerol + 0.5 mol·L-1 NaOH | 0 V vs. Hg/HgO, 2 h | glycerate ~32% | [ |
Pd nanocubes | 0.2 mol·L-1 glycerol + 0.1 mol·L-1 KOH | 0.87 V vs. RHE, 9 h | tartronate 99% | [ |
Figure 12
Infrared spectra recorded during glycerol oxidation on (A) Pd0.3Au0.7/C, (B) Pd0.5Au0.5/C and (C) Pd0.5Ni0.5/C catalysts in 0.1 mol·L-1 glycerol + 1.0 mol·L-1 NaOH electrolyte at 293 K. Scan rate: 1 mV·s-1, resolution 4 cm-1. Reproduced with permission[110]. Copyright © 2009, Elsevier B.V.
[1] |
Chen Y X, Lavacchi A, Miller H A, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis[J]. Nat. Commun., 2014, 5(1): 4036.
doi: 10.1038/ncomms5036 URL |
[2] |
Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem, 2019, 6(13): 3214-3226.
doi: 10.1002/celc.v6.13 URL |
[3] |
Garlyyev B, Xue S, Fichtner J, Bandarenka A S, Andronescu C. Prospects of value-added chemicals and hydrogen via electrolysis[J]. ChemSusChem, 2020, 13(10): 2513-2521.
doi: 10.1002/cssc.v13.10 URL |
[4] | Miller H A, Lavacchi A, Vizza F. Storage of renewable energy in fuels and chemicals through electrochemical reforming of bioalcohols[J]. Curr. Opin. Electrochem., 2020, 21: 140-145. |
[5] |
Holade Y, Tuleushova N, Tingry S, Servat K, Napporn T W, Guesmi H, Cornu D, Kokoh K B. Recent advances in the electrooxidation of biomass-based organic molecules for energy, chemicals and hydrogen production[J]. Catal. Sci. Technol., 2020, 10(10): 3071-3112.
doi: 10.1039/C9CY02446H URL |
[6] |
Houache M S E, Hughes K, Baranova E A. Study on catalyst selection for electrochemical valorization of glycerol[J]. Sustain. Energy Fuels, 2019, 3(8): 1892-1915.
doi: 10.1039/C9SE00108E URL |
[7] |
Katryniok B, Kimura H, Skrzyńska E, Girardon J S, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F. Selective catalytic oxidation of glycerol: perspectives for high value chemicals[J]. Green Chem., 2011, 13(8): 1960-1979.
doi: 10.1039/c1gc15320j URL |
[8] |
Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F. Improved utilisation of renewable resources: New important derivatives of glycerol[J]. Green Chem., 2008, 10(1): 13-30.
doi: 10.1039/B710561D URL |
[9] |
Katryniok B, Paul S, Dumeignil F. Recent developments in the field of catalytic dehydration of glycerol to acrolein[J]. ACS Catal., 2013, 3(8): 1819-1834.
doi: 10.1021/cs400354p URL |
[10] |
Zhou C H, Beltramini J N, Fan Y X, Lu G Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals[J]. Chem. Soc. Rev., 2008, 37(3): 527-549.
doi: 10.1039/B707343G URL |
[11] |
Bagheri S, Julkapli N M, Yehye W A. Catalytic conversion of biodiesel derived raw glycerol to value added products[J]. Renew. Sust. Energ. Rev., 2015, 41: 113-127.
doi: 10.1016/j.rser.2014.08.031 URL |
[12] |
Nda-Umar U, Ramli I, Taufiq-Yap Y, Muhamad E. An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals[J]. Catalysts, 2018, 9(1): 15.
doi: 10.3390/catal9010015 URL |
[13] |
Simões M, Baranton S, Coutanceau C. Electrochemical valorisation of glycerol[J]. ChemSusChem, 2012, 5(11): 2106-2124.
doi: 10.1002/cssc.v5.11 URL |
[14] |
Dodekatos G, Schünemann S, Tüysüz H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation[J]. ACS Catal., 2018, 8(7): 6301-6333.
doi: 10.1021/acscatal.8b01317 URL |
[15] |
Talebian-Kiakalaieh A, Amin N A S, Rajaei K, Tarighi S. Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes[J]. Appl. Energy, 2018, 230: 1347-1379.
doi: 10.1016/j.apenergy.2018.09.006 URL |
[16] |
Coutanceau C, Baranton S, Kouamé R S B. Selective electrooxidation of glycerol into value-added chemicals: A short overview[J]. Front. Chem., 2019, 7: 100.
doi: 10.3389/fchem.2019.00100 URL |
[17] |
Rahim S A N M, Lee C S, Abnisa F, Aroua M K, Daud W A W, Cognet P, Pérès Y. A review of recent developments on kinetics parameters for glycerol electrochemical conversion - A by-product of biodiesel[J]. Sci. Total Environ., 2020, 705: 135137.
doi: 10.1016/j.scitotenv.2019.135137 URL |
[18] |
Antolini E. Glycerol electro-oxidation in alkaline media and alkaline direct glycerol fuel cells[J]. Catalysts, 2019, 9(12): 980.
doi: 10.3390/catal9120980 URL |
[19] | Alaba P A, Lee C S, Abnisa F, Aroua M K, Cognet P, Pérès Y, Wan Daud W M A. A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation[J]. Rev. Chem. Eng., 2020: 20190013. |
[20] |
Braunberger T L, Nahhas A F, Katz L M, Sadrieh N, Lim H W. Dihydroxyacetone: A review[J]. J. Drugs Dermatol., 2018, 17(4): 387-391.
pmid: 29601614 |
[21] | Sharad J. Glycolic acid peel therapy - a current review[J]. Clin. Cosmet. Investig. Dermatol., 2013, 6: 281-288. |
[22] |
Johnson D T, Taconi K A. The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production[J]. Environ. Prog., 2007, 26(4): 338-348.
doi: 10.1002/(ISSN)1547-5921 URL |
[23] |
Fernández P S, Fernandes Gomes J, Angelucci C A, Tereshchuk P, Martins C A, Camara G A, Martins M E, Da Silva J L F, Tremiliosi-Filho G. Establishing a link between well-ordered Pt(100) surfaces and real systems: How do random superficial defects influence the electro-oxidation of glycerol?[J]. ACS Catal., 2015, 5(7): 4227-4236.
doi: 10.1021/acscatal.5b00451 URL |
[24] |
Garcia A C, Kolb M J, van Nierop y Sanchez C, Vos J, Birdja Y Y, Kwon Y, Tremiliosi-Filho G, Koper M T M. Strong impact of platinum surface structure on primary and secondary alcohol oxidation during electro-oxidation of glycerol[J]. ACS Catal., 2016, 6(7): 4491-4500.
doi: 10.1021/acscatal.6b00709 URL |
[25] |
Kwon Y, Birdja Y, Spanos I, Rodriguez P, Koper M T M. Highly selective electro-oxidation of glycerol to dihydroxyacetone on platinum in the presence of bismuth[J]. ACS Catal., 2012, 2(5): 759-764.
doi: 10.1021/cs200599g URL |
[26] |
de Souza M B C, Vicente R A, Yukuhiro V V Y, V. M. T. Pires C T G, Cheuquepán W, Bott-Neto J L, Solla-Gullón J, Fernández P S. Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline solution: Effects on activity and selectivity[J]. ACS Catal., 2019, 9(6): 5104-5110.
doi: 10.1021/acscatal.9b00190 URL |
[27] |
de Souza M B C, Yukuhiro V Y, Vicente R A, Vilela Menegaz Teixeira Pires C T G, Bott-Neto J L, Fernández P S. Pb- and Bi-modified Pt electrodes toward glycerol electrooxidation in alkaline media. Activity, selectivity, and the importance of the Pt atoms arrangement[J]. ACS Catal., 2020, 10(3): 2131-2137.
doi: 10.1021/acscatal.9b04805 URL |
[28] |
Gomes J F, Tremiliosi-Filho G. Spectroscopic studies of the glycerol electro-oxidation on polycrystalline Au and Pt surfaces in acidic and alkaline media[J]. Electrocatalysis, 2011, 2(2): 96-105.
doi: 10.1007/s12678-011-0039-0 URL |
[29] |
Fernández P S, Martins M E, Camara G A. New insights about the electro-oxidation of glycerol on platinum nanoparticles supported on multi-walled carbon nanotubes[J]. Electrochim. Acta, 2012, 66: 180-187.
doi: 10.1016/j.electacta.2012.01.069 URL |
[30] |
Fernández P S, Martins M E, Martins C A, Camara G A. The electro-oxidation of isotopically labeled glycerol on platinum: New information on C-C bond cleavage and CO2 production[J]. Electrochem. Commun., 2012, 15(1): 14-17.
doi: 10.1016/j.elecom.2011.11.013 URL |
[31] |
Fernández P S, Martins C A, Martins M E, Camara G A. Electrooxidation of glycerol on platinum nanoparticles: Deciphering how the position of each carbon affects the oxidation pathways[J]. Electrochim. Acta, 2013, 112: 686-691.
doi: 10.1016/j.electacta.2013.09.032 URL |
[32] |
Fernández P S, Tereshchuk P, Angelucci C A, Gomes J F, Garcia A C, Martins C A, Camara G A, Martins M E, Da Silva J L F, Tremiliosi-Filho G. How do random superficial defects influence the electro-oxidation of glycerol on Pt(111) surfaces?[J]. Phys. Chem. Chem. Phys., 2016, 18(36): 25582-25591.
pmid: 27711508 |
[33] |
Schnaidt J, Heinen M, Denot D, Jusys Z, Jürgen Behm R. Electrooxidation of glycerol studied by combined in situ IR spectroscopy and online mass spectrometry under continuous flow conditions[J]. J. Electroanal. Chem., 2011, 661(1): 250-264.
doi: 10.1016/j.jelechem.2011.08.011 URL |
[34] |
Huang L, Sun J Y, Cao S H, Zhan M, Ni Z R, Sun H J, Chen Z, Zhou Z Y, Sorte E G, Tong Y J, Sun S G. Combined EC-NMR and in situ FTIR spectroscopic studies of glycerol electrooxidation on Pt/C, PtRu/C, and PtRh/C[J]. ACS Catal., 2016, 6(11): 7686-7695.
doi: 10.1021/acscatal.6b02097 URL |
[35] |
Sandrini R M L M, Sempionatto J R, Herrero E, Feliu J M, Souza-Garcia J, Angelucci C A. Mechanistic aspects of glycerol electrooxidation on Pt(111) electrode in alkaline media[J]. Electrochem. Commun., 2018, 86: 149-152.
doi: 10.1016/j.elecom.2017.11.027 URL |
[36] |
Sandrini R M L M, Sempionatto J R, Tremiliosi-Filho G, Herrero E, Feliu J M, Souza-Garcia J, Angelucci C A. Electrocatalytic oxidation of glycerol on platinum single crystals in alkaline media[J]. ChemElectroChem, 2019, 6(16): 4238-4245.
doi: 10.1002/celc.201900311 |
[37] |
Gomes J F, de Paula F B C, Gasparotto L H S, Tremiliosi-Filho G. The influence of the Pt crystalline surface orientation on the glycerol electro-oxidation in acidic media[J]. Electrochim. Acta, 2012, 76: 88-93.
doi: 10.1016/j.electacta.2012.04.144 URL |
[38] |
Holade Y, Morais C, Servat K, Napporn T W, Kokoh K B. Toward the electrochemical valorization of glycerol: Fourier transform infrared spectroscopic and chromatographic studies[J]. ACS Catal., 2013, 3(10): 2403-2411.
doi: 10.1021/cs400559d URL |
[39] |
Zalineeva A, Baranton S, Coutanceau C. How do Bi-mo-dified palladium nanoparticles work towards glycerol electrooxidation? Anin situ FTIR study[J]. Electrochim. Acta, 2015, 176: 705-717.
doi: 10.1016/j.electacta.2015.07.073 URL |
[40] |
Coutanceau C, Zalineeva A, Baranton S, Simoes M. Modification of palladium surfaces by bismuth adatoms or clusters: Effect on electrochemical activity and selectivity towards polyol electrooxidation[J]. Int. J. Hydrogen Energy, 2014, 39(28): 15877-15886.
doi: 10.1016/j.ijhydene.2014.03.076 URL |
[41] |
Garcia A C, Birdja Y Y, Tremiliosi-Filho G, Koper M T M. Glycerol electro-oxidation on bismuth-modified platinum single crystals[J]. J. Catal., 2017, 346: 117-124.
doi: 10.1016/j.jcat.2016.12.013 URL |
[42] |
Araujo H R, Zanata C R, Teixeira-Neto E, de Lima R B, Batista B C, Giz M J, Camara G A. How the adsorption of Sn on Pt (100) preferentially oriented nanoparticles affects the pathways of glycerol electro-oxidation[J]. Electrochim. Acta, 2019, 297: 61-69.
doi: 10.1016/j.electacta.2018.11.181 URL |
[43] |
Jeffery D Z, Camara G A. The formation of carbon dioxide during glycerol electrooxidation in alkaline media: First spectroscopic evidences[J]. Electrochem. Commun., 2010, 12(8): 1129-1132.
doi: 10.1016/j.elecom.2010.06.001 URL |
[44] |
Leung L W H, Weaver M J. Influence of adsorbed carbon monoxide on electrocatalytic oxidation of simple organic molecules at platinum and palladium electrodes in acidic solution: A survey using real-time FTIR spectroscopy[J]. Langmuir, 1990, 6(2): 323-333.
doi: 10.1021/la00092a006 URL |
[45] |
Kwon Y, Schouten K J P, Koper M T M. Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes[J]. ChemCatChem, 2011, 3(7): 1176-1185.
doi: 10.1002/cctc.v3.7 URL |
[46] |
Kwon Y, Koper M T M. Combining voltammetry with HPLC: Application to electro-oxidation of glycerol[J]. Anal. Chem., 2010, 82(13): 5420-5424.
doi: 10.1021/ac101058t URL |
[47] |
Kwon Y, Hersbach T J P, Koper M T M. Electro-oxidation of glycerol on platinum modified by adatoms: Activity and selectivity effects[J]. Top. Catal., 2014, 57(14): 1272-1276.
doi: 10.1007/s11244-014-0292-6 URL |
[48] |
Roquet L, Belgsir E M, Léger J M, Lamy C. Kinetics and mechanisms of the electrocatalytic oxidation of glycerol as investigated by chromatographic analysis of the reaction products: Potential and pH effects[J]. Electrochim. Acta, 1994, 39(16): 2387-2394.
doi: 10.1016/0013-4686(94)E0190-Y URL |
[49] |
Marchionni A, Bevilacqua M, Bianchini C, Chen Y X, Filippi J, Fornasiero P, Lavacchi A, Miller H, Wang L, Vizza F. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells[J]. ChemSusChem, 2013, 6(3): 518-528.
doi: 10.1002/cssc.201200866 URL |
[50] |
Liu Y, Yu W, Raciti D, Gracias D H, Wang C. Electrocatalytic oxidation of glycerol on platinum[J]. J. Phys. Chem. C, 2019, 123(1): 426-432.
doi: 10.1021/acs.jpcc.8b08547 URL |
[51] |
Fernández P S, Martins C A, Angelucci C A, Gomes J F, Camara G A, Martins M E, Tremiliosi-Filho G. Evidence for independent glycerol electrooxidation behavior on different ordered domains of polycrystalline platinum[J]. ChemElectroChem, 2015, 2(2): 263-268.
doi: 10.1002/celc.201402291 URL |
[52] |
Liu B, Gao F. Navigating glycerol conversion roadmap and heterogeneous catalyst selection aided by density functional theory: A review[J]. Catalysts, 2018, 8(2): 44.
doi: 10.3390/catal8020044 URL |
[53] |
Liu B, Greeley J. Decomposition pathways of glycerol via C-H, O-H, and C-C bond scission on Pt(111): A density functional theory study[J]. J. Phys. Chem. C, 2011, 115(40): 19702-19709.
doi: 10.1021/jp202923w URL |
[54] |
Liu B, Greeley J. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces[J]. Phys. Chem. Chem. Phys., 2013, 15(17): 6475-6485.
doi: 10.1039/c3cp44088e URL |
[55] |
Liu B, Greeley J. Density functional theory study of selectivity considerations for C-C versus C-O bond scission in glycerol decomposition on Pt(111)[J]. Top. Catal., 2012, 55(5): 280-289.
doi: 10.1007/s11244-012-9806-2 URL |
[56] |
Valter M, Busch M, Wickman B, Grönbeck H, Baltrusaitis J, Hellman A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018, 122(19): 10489-10494.
doi: 10.1021/acs.jpcc.8b02685 URL |
[57] |
Valter M, dos Santos E C, Pettersson L G M, Hellman A. Partial electrooxidation of glycerol on close-packed transition metal surfaces: Insights from first-principles calculations[J]. J. Phys. Chem. C, 2020, 124(33): 17907-17915.
doi: 10.1021/acs.jpcc.0c04002 URL |
[58] |
Hammer B, Nørskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240.
doi: 10.1038/376238a0 URL |
[59] |
Hammer B, Nørskov J K. Electronic factors determining the reactivity of metal surfaces[J]. Surf. Sci., 1995, 343(3): 211-220.
doi: 10.1016/0039-6028(96)80007-0 URL |
[60] | Hammer B, Nørskov J K. Theoretical surface science and catalysis-calculations and concepts[M]//Advances in Ca-talysis, Academic Press, 2000: 71-129. |
[61] |
Nørskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts[J]. Nat. Chem., 2009, 1(1): 37-46.
doi: 10.1038/nchem.121 pmid: 21378799 |
[62] |
Kim H J, Choi S M, Green S, Tompsett G A, Lee S H, Huber G W, Kim W B. Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol[J]. Appl. Catal., B, 2011, 101(3): 366-375.
doi: 10.1016/j.apcatb.2010.10.005 URL |
[63] |
Gomes J F, Martins C A, Giz M J, Tremiliosi-Filho G, Camara G A. Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects[J]. J. Catal., 2013, 301: 154-161.
doi: 10.1016/j.jcat.2013.02.007 URL |
[64] |
González-Cobos J, Baranton S, Coutanceau C. Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals[J]. ChemElectroChem, 2016, 3(10): 1694-1704.
doi: 10.1002/celc.v3.10 URL |
[65] |
Wang C Y, Yu Z Y, Li G, Song Q T, Li G, Luo C X, Yin S H, Lu B A, Xiao C, Xu B B, Zhou Z Y, Tian N, Sun S G. Intermetallic PtBi nanoplates with high catalytic activity towards electro-oxidation of formic acid and glycerol[J]. ChemElectroChem, 2020, 7(1): 239-245.
doi: 10.1002/celc.v7.1 URL |
[66] |
Kouamé B S R, Baranton S, Brault P, Canaff C, Chamorro-Coral W, Caillard A, De Oliveira Vigier K, Coutanceau C. Insights on the unique electro-catalytic behavior of PtBi/C materials[J]. Electrochim. Acta, 2020, 329: 135161.
doi: 10.1016/j.electacta.2019.135161 URL |
[67] |
González-Cobos J, Baranton S, Coutanceau C. A systematicin situ infrared study of the electrooxidation of C3 alcohols on carbon-supported Pt and Pt-Bi catalysts[J]. J. Phys. Chem. C, 2016, 120(13): 7155-7164.
doi: 10.1021/acs.jpcc.6b00295 URL |
[68] |
Falase A, Main M, Garcia K, Serov A, Lau C, Atanassov P. Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts[J]. Electrochim. Acta, 2012, 66: 295-301.
doi: 10.1016/j.electacta.2012.01.096 URL |
[69] |
Kim Y, Kim H W, Lee S, Han J, Lee D, Kim J R, Kim T W, Kim C U, Jeong S Y, Chae H J, Kim B S, Chang H, Kim W B, Choi S M, Kim H J. The role of ruthenium on carbon-supported PtRu catalysts for electrocatalytic glycerol oxidation under acidic conditions[J]. ChemCatChem, 2017, 9(9): 1683-1690.
doi: 10.1002/cctc.v9.9 URL |
[70] |
Tam B, Duca M, Wang A, Fan M, Garbarino S, Guay D. Promotion of glycerol oxidation by selective Ru decoration of (100) domains at nanostructured Pt electrodes[J]. ChemElectroChem, 2019, 6(6): 1784-1793.
doi: 10.1002/celc.v6.6 URL |
[71] |
Zhou Y F, Shen Y, Piao J H. Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on Pt-based catalysts[J]. ChemElectroChem, 2018, 5(13): 1636-1643.
doi: 10.1002/celc.v5.13 URL |
[72] |
Alencar L M, Martins C A. Decorating Pt/C nanoparticles with Ru by wall-jet configuration: The role of coverage degree on the catalyst activity for glycerol electrooxidation[J]. Electroanalysis, 2018, 30(9): 2167-2175.
doi: 10.1002/elan.v30.9 URL |
[73] |
Kim H J, Choi S M, Seo M H, Green S, Huber G W, Kim W B. Efficient electrooxidation of biomass-derived glycerol over a graphene-supported PtRu electrocatalyst[J]. Electrochem. Commun., 2011, 13(8): 890-893.
doi: 10.1016/j.elecom.2011.05.031 URL |
[74] |
Palma L M, Almeida T S, Morais C, Napporn T W, Kokoh K B, de Andrade A R. Effect of co-catalyst on the selective electrooxidation of glycerol over ruthenium-based nanomaterials[J]. ChemElectroChem, 2017, 4(1): 39-45.
doi: 10.1002/celc.201600406 URL |
[75] | Zakaria K, McKay M, Thimmappa R, Hasan M, Mamlouk M, Scott K. Direct glycerol fuel cells: Comparison with direct methanol and ethanol fuel cells[J]. ChemEle-ctroChem, 2019, 6(9): 2578-2585. |
[76] |
Da Silva R G, Aquino Neto S, Kokoh K B, De Andrade A R. Electroconversion of glycerol in alkaline medium: From generation of energy to formation of value-added products[J]. J. Power Sources, 2017, 351: 174-182.
doi: 10.1016/j.jpowsour.2017.03.101 URL |
[77] |
Bhunia K, Khilari S, Pradhan D. Monodispersed PtPdNi trimetallic nanoparticles-integrated reduced graphene oxide hybrid platform for direct alcohol fuel cell[J]. ACS Sustain. Chem. Eng., 2018, 6(6): 7769-7778.
doi: 10.1021/acssuschemeng.8b00721 URL |
[78] | Lee S, Kim H J, Choi S M, Seo M H, Kim W B. The promotional effect of Ni on bimetallic PtNi/C catalysts for glycerol electrooxidation[J]. Appl. Catal., A, 2012, 429-430: 39-47. |
[79] |
Zhang N, Zhu Y M, Shao Q, Zhu X, Huang X Q. Ternary PtNi/PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions[J]. J. Mater. Chem. A, 2017, 5(36): 18977-18983.
doi: 10.1039/C7TA05130A URL |
[80] |
Kim Y, Kim H, Kim W B. PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media[J]. Electrochem. Commun., 2014, 46: 36-39.
doi: 10.1016/j.elecom.2014.06.007 URL |
[81] |
Zhou Y F, Shen Y, Xi J Y, Luo X L. Selective electro-oxidation of glycerol to dihydroxyacetone by PtAg skeletons[J]. ACS Appl. Mater. Interfaces, 2019, 11(32): 28953-28959.
doi: 10.1021/acsami.9b09431 URL |
[82] |
Garcia A C, Ferreira E B, Silva de Barros V V, Linares J J, Tremiliosi-Filho G. PtAg/MnOx/C as a promising electrocatalyst for glycerol electro-oxidation in alkaline medium[J]. J. Electroanal. Chem., 2017, 793: 188-196.
doi: 10.1016/j.jelechem.2016.11.053 URL |
[83] |
Zhou Y F, Shen Y, Xi J Y. Seed-mediated synjournal of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol[J]. Appl. Catal. B, 2019, 245: 604-612.
doi: 10.1016/j.apcatb.2019.01.009 URL |
[84] |
Rezaei B, Saeidi-Boroujeni S, Havakeshian E, Ensafi A A. Highly efficient electrocatalytic oxidation of glycerol by Pt-Pd/Cu trimetallic nanostructure electrocatalyst supported on nanoporous stainless steel electrode using galvanic replacement[J]. Electrochim. Acta, 2016, 203: 41-50.
doi: 10.1016/j.electacta.2016.04.024 URL |
[85] |
Lee Y W, Ko A R, Han S B, Kim H S, Park K W. Synjournal of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation[J]. Phys. Chem. Chem. Phys., 2011, 13(13): 5569-5572.
doi: 10.1039/c0cp02167a URL |
[86] |
Zhao J, Jing W L, Tan T, Liu X Y, Kang Y M, Wang W. Etching high-Fe-content PtPdFe nanoparticles as efficient catalysts towards glycerol electrooxidation[J]. New J. Chem., 2020, 44(11): 4604-4612.
doi: 10.1039/C9NJ06259A URL |
[87] |
Li D A, Cai K, Wu L, Zuo Y P, Yin W M, Zhang H, Lu Z C, Zhu G L, Han H Y. Ammonia mediated one-step synjournal of three-dimensional porous PtxCu100-x nanochain networks with enhanced electrocatalytic activity toward polyhydric alcohol oxidation[J]. ACS Sustain. Chem. Eng., 2017, 5(11): 11086-11095.
doi: 10.1021/acssuschemeng.7b03047 URL |
[88] |
Wang A J, Zhang X F, Jiang L Y, Zhang L, Feng J J. Bimetallic alloyed PtCu nanocubic frames with three-dimensional molecular accessible surfaces for boosting oxygen reduction and glycerol oxidation reactions[J]. ChemCatChem, 2018, 10(15): 3319-3326.
doi: 10.1002/cctc.201800188 URL |
[89] |
Xu H, Song P P, Gao F, Shiraishi Y, Du Y K. Hierarchical branched platinum-copper tripods as highly active and stable catalysts[J]. Nanoscale, 2018, 10(17): 8246-8252.
doi: 10.1039/C8NR01962B URL |
[90] |
Caneppele G L, Almeida T S, Zanata C R, Teixeira-Neto É, Fernández P S, Camara G A, Martins C A. Exponential improving in the activity of Pt/C nanoparticles towards glycerol electrooxidation by Sb ad-atoms deposition[J]. Appl. Catal. B, 2017, 200: 114-120.
doi: 10.1016/j.apcatb.2016.06.072 URL |
[91] |
Scachetti T P, Angelo A C D. Ordered intermetallic nano-structured PtSb/C for production of energy and chemicals[J]. Electrocatalysis, 2015, 6(5): 472-480.
doi: 10.1007/s12678-015-0265-y URL |
[92] |
Lee S, Kim H J, Lim E J, Kim Y, Noh Y, Huber G W, Kim W B. Highly selective transformation of glycerol to dihydroxyacetone without using oxidants by a PtSb/C-catalyzed electrooxidation process[J]. Green Chem., 2016, 18(9): 2877-2887.
doi: 10.1039/C5GC02865E URL |
[93] |
Du H Y, Wang K, Tsiakaras P, Shen P K. Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts[J]. Appl. Catal. B, 2019, 258: 117951.
doi: 10.1016/j.apcatb.2019.117951 URL |
[94] |
Silva L S R, López-Suárez F E, Perez-Cadenas M, Santos S F, da Costa L P, Eguiluz K I B, Salazar-Banda G R. Synjournal and characterization of highly active Pbx@Pty/C core-shell nanoparticles toward glycerol electrooxidation[J]. Appl. Catal. B, 2016, 198: 38-48.
doi: 10.1016/j.apcatb.2016.04.046 URL |
[95] |
Zanata C R, Fernández P S, Troiani H E, Soldati A L, Landers R, Camara G A, Carvalho A E, Martins C A. Rh-decorated PtIrOx nanoparticles for glycerol electrooxidation: Searching for a stable and active catalyst[J]. Appl. Catal. B, 2016, 181: 445-455.
doi: 10.1016/j.apcatb.2015.08.021 URL |
[96] |
Ottoni C A, da Silva S G, De Souza R F B, Neto A O. PtAu electrocatalyst for glycerol oxidation reaction using a ATR-FTIR/single direct alkaline glycerol/air cell in situ study[J]. Electrocatalysis, 2016, 7(1): 22-32.
doi: 10.1007/s12678-015-0277-7 URL |
[97] |
Jin C C, Zhu J H, Dong R L, Huo Q S. Improved activity and different performances of reduced graphene oxide-supported Pt nanoparticles modified with a small amount of Au in the electrooxidation of ethylene glycol and glycerol[J]. Electrochim. Acta, 2016, 190: 829-834.
doi: 10.1016/j.electacta.2015.12.222 URL |
[98] |
Li N, Xia W Y, Xu C W, Chen S. Pt/C and Pd/C catalysts promoted by Au for glycerol and CO electrooxidation in alkaline medium[J]. J. Energy Inst., 2017, 90(5): 725-733.
doi: 10.1016/j.joei.2016.07.005 URL |
[99] |
Martins C A, Ibrahim O A, Pei P, Kjeang E. In situ decoration of metallic catalysts in flow-through electrodes: Application of Fe/Pt/C for glycerol oxidation in a microfluidic fuel cell[J]. Electrochim. Acta, 2019, 305: 47-55.
doi: 10.1016/j.electacta.2019.03.018 |
[100] |
Li Z Y, Zhou J, Tang L S, Fu X P, Wei H, Xue M, Zhao Y L, Jia C J, Li X M, Chu H B, Li Y. Hydroxyl-rich ceria hydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts[J]. J. Mater. Chem. A, 2018, 6(5): 2318-2326.
doi: 10.1039/C7TA09071D URL |
[101] |
Velázquez-Hernández I, Oropeza-Guzmán M T, Guerra-Balcázar M, Álvarez-Contreras L, Arjona N. Electrocatalytic promotion of Pt nanoparticles by incorporation of Ni(OH)2 for glycerol electro-oxidation: Analysis of activity and reaction pathway[J]. ChemNanoMat, 2019, 5(1): 68-78.
doi: 10.1002/cnma.v5.1 URL |
[102] |
Ahmad M S, Cheng C K, Ong H R, Abdullah H, Khan M R. Electro-oxidation of renewable glycerol to value added chemicals over phosphorous-doped Pt/MCNTs nanoparticles[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 702: 012025.
doi: 10.1088/1757-899X/702/1/012025 URL |
[103] |
Lee D, Kim Y, Kwon Y, Lee J, Kim T W, Noh Y, Kim W B, Seo M H, Kim K, Kim H J. Boosting the electrocatalytic glycerol oxidation performance with highly-dispersed Pt nanoclusters loaded on 3D graphene-like microporous carbon[J]. Appl. Catal, B, 2019, 245: 555-568.
doi: 10.1016/j.apcatb.2019.01.022 URL |
[104] |
Ning X M, Yu H, Peng F, Wang H J. Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO[J]. J. Catal., 2015, 325: 136-144.
doi: 10.1016/j.jcat.2015.02.010 URL |
[105] |
Wang W, Jing W L, Wang F X, Liu S J, Liu X Y, Lei Z Q. Amorphous ultra-dispersed Pt clusters supported on nitrogen functionalized carbon: A superior electrocatalyst for glycerol electrooxidation[J]. J. Power Sources, 2018, 399: 357-362.
doi: 10.1016/j.jpowsour.2018.07.120 URL |
[106] |
Hersbach T J P, Ye C, Garcia A C, Koper M T M. Tailoring the electrocatalytic activity and selectivity of Pt(111) through cathodic corrosion[J]. ACS Catal., 2020, 10(24): 15104-15113.
doi: 10.1021/acscatal.0c04016 URL |
[107] |
Zalineeva A, Serov A, Padilla M, Martinez U, Artyushk-ova K, Baranton S, Coutanceau C, Atanassov P B. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media[J]. J. Am. Chem. Soc., 2014, 136(10): 3937-3945.
doi: 10.1021/ja412429f pmid: 24548221 |
[108] |
Simões M, Baranton S, Coutanceau C. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification[J]. Appl. Catal. B, 2011, 110: 40-49.
doi: 10.1016/j.apcatb.2011.08.020 URL |
[109] |
Zalineeva A, Baranton S, Coutanceau C. Bi-modified palladium nanocubes for glycerol electrooxidation[J]. Electrochem. Commun., 2013, 34: 335-338.
doi: 10.1016/j.elecom.2013.07.022 URL |
[110] |
Simões M, Baranton S, Coutanceau C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Appl. Catal., B, 2010, 93(3): 354-362.
doi: 10.1016/j.apcatb.2009.10.008 URL |
[111] |
Cai K, Liao Y X, Zhang H, Liu J W, Lu Z C, Huang Z, Chen S L, Han H Y. Controlled synjournal of Au-island-covered Pd nanotubes with abundant heterojunction interfaces for enhanced electrooxidation of alcohol[J]. ACS Appl. Mater. Interfaces, 2016, 8(20): 12792-12797.
doi: 10.1021/acsami.6b02099 URL |
[112] |
Mougenot M, Caillard A, Simoes M, Baranton S, Cout-anceau C, Brault P. PdAu/C catalysts prepared by plasma sputtering for the electro-oxidation of glycerol[J]. Appl. Catal., B, 2011, 107(3): 372-379.
doi: 10.1016/j.apcatb.2011.07.039 URL |
[113] |
Qi J, Benipal N, Liang C H, Li W Z. PdAg/CNT catalyzed alcohol oxidation reaction for high-performance anion exchange membrane direct alcohol fuel cell (alcohol = methanol, ethanol, ethylene glycol and glycerol)[J]. Appl. Catal., B, 2016, 199: 494-503.
doi: 10.1016/j.apcatb.2016.06.055 URL |
[114] |
Velázquez-Hernández I, Zamudio E, Rodríguez-Valadez F J, García-Gómez N A, Álvarez-Contreras L, Guerra-Balcäzar M, Arjona N. Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd, Au and PdAu nanomaterials[J]. Fuel, 2020, 262: 116556.
doi: 10.1016/j.fuel.2019.116556 URL |
[115] |
Lam B T X, Chiku M, Higuchi E, Inoue H. Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium[J]. J. Power Sources, 2015, 297: 149-157.
doi: 10.1016/j.jpowsour.2015.07.086 URL |
[116] |
Yahya N, Kamarudin S K, Karim N A, Masdar M S, Loh K S, Lim K L. Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support[J]. Energy Convers. Manage., 2019, 188: 120-130.
doi: 10.1016/j.enconman.2019.02.087 URL |
[117] |
Li S P, Lai J P, Luque R, Xu G B. Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. Energy Environ. Sci., 2016, 9(10): 3097-3102.
doi: 10.1039/C6EE02229D URL |
[118] |
Holade Y, Morais C, Arrii-Clacens S, Servat K, Napporn T W, Kokoh K B. New preparation of PdNi/C and PdAg/C nanocatalysts for glycerol electrooxidation in alkaline medium[J]. Electrocatalysis, 2013, 4(3): 167-178.
doi: 10.1007/s12678-013-0138-1 URL |
[119] | Benipal N, Qi J, Liu Q, Li W Z. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells[J]. Appl. Catal., B, 2017, 210: 121-130. |
[120] |
Xu H, Song P P, Fernandez C, Wang J, Zhu M, S Shiraishi Y, Du Y K. Sophisticated construction of binary PdPb alloy nanocubes as robust electrocatalysts toward ethylene glycol and glycerol oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10(15): 12659-12665.
doi: 10.1021/acsami.8b00532 URL |
[121] |
Serov A, Asset T, Padilla M, Matanovic I, Martinez U, Roy A, Artyushkova K, Chatenet M, Maillard F, Bayer D, Cremers C, Atanassov P. Highly-active Pd-Cu electrocatalysts for oxidation of ubiquitous oxygenated fuels[J]. Appl. Catal., B, 2016, 191: 76-85.
doi: 10.1016/j.apcatb.2016.03.016 URL |
[122] |
Yang F, Ye J Y, Yuan Q, Yang X T, Xie Z X, Zhao F L, Zhou Z Y, Gu L, Wang X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells[J]. Adv. Funct. Mater., 2020, 30(11): 1908235.
doi: 10.1002/adfm.v30.11 URL |
[123] |
Lv H, Sun L Z, Xu D D, Suib S L, Liu B. One-pot aqueous synjournal of ultrathin trimetallic PdPtCu nanosheets for the electrooxidation of alcohols[J]. Green Chem., 2019, 21(9): 2367-2374.
doi: 10.1039/C9GC00741E URL |
[124] |
Hong W, Shang C S, Wang J, Wang E K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation[J]. Energy Environ. Sci., 2015, 8(10): 2910-2915.
doi: 10.1039/C5EE01988E URL |
[125] |
Zhou Y F, Shen Y. Selective electro-oxidation of glycerol over Pd and Pt@Pd nanocubes[J]. Electrochem. Commun., 2018, 90: 106-110.
doi: 10.1016/j.elecom.2018.04.012 URL |
[126] | Zalineeva A, Serov A, Padilla M, Martinez U, Artyushk-ova K, Baranton S, Coutanceau C, Atanassov P B. Glycerol electrooxidation on self-supported Pd1Snx nanoparticules[J]. Appl. Catal. B, 2015, 176-177: 429-435. |
[127] |
Wang W, Kang Y M, Yang Y, Liu Y Q, Chai D, Lei Z Q. PdSn alloy supported on phenanthroline-functionalized carbon as highly active electrocatalysts for glycerol oxidation[J]. Int. J. Hydrogen Energy, 2016, 41(2): 1272-1280.
doi: 10.1016/j.ijhydene.2015.11.017 URL |
[128] |
Rostami H, Omrani A, Rostami A A. On the role of electrodeposited nanostructured Pd-Co alloy on Au for the electrocatalytic oxidation of glycerol in alkaline media[J]. Int. J. Hydrogen Energy, 2015, 40(30): 9444-9451.
doi: 10.1016/j.ijhydene.2015.05.154 URL |
[129] |
Fashedemi O O, Ozoemena K I. Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts[J]. Electrochim. Acta, 2014, 128: 279-286.
doi: 10.1016/j.electacta.2013.10.194 URL |
[130] |
Fashedemi O O, Miller H A, Marchionni A, Vizza F, Ozoemena K I. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: Functionalized MWCNT supports and impact on product selectivity[J]. J. Mater. Chem. A, 2015, 3(13): 7145-7156.
doi: 10.1039/C5TA00076A URL |
[131] |
Palma L M, Almeida T S, Oliveira V L, Tremiliosi-Filho G, Gonzalez E R, de Andrade A R, Servat K, Morais C, Napporn T W, Kokoh K B. Identification of chemicals resulted in selective glycerol conversion as sustainable fuel on Pd-based anode nanocatalysts[J]. RSC Adv., 2014, 4(110): 64476-64483.
doi: 10.1039/C4RA09822F URL |
[132] |
Zanata C R, Martins C A, Teixeira-Neto É, Giz M J, Camara G A. Two-step synjournal of Ir-decorated Pd nanocubes and their impact on the glycerol electrooxidation[J]. J. Catal., 2019, 377: 358-366.
doi: 10.1016/j.jcat.2019.07.042 URL |
[133] |
Ferreira Jr R S, Janete Giz M, Camara G A. Influence of the local pH on the electrooxidation of glycerol on palladium-rhodium electrodeposits[J]. J. Electroanal. Chem., 2013, 697: 15-20.
doi: 10.1016/j.jelechem.2013.03.007 URL |
[134] |
Xu C W, Tian Z Q, Shen P K, Jiang S P. Oxide (CeO2, NiO, Co3O3 and Mn3O3)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media[J]. Electrochim. Acta, 2008, 53(5): 2610-2618.
doi: 10.1016/j.electacta.2007.10.036 URL |
[135] | Ejikeme P M, Makgopa K, Raju K, Ozoemena K I. Promotional effects of nanodiamond-derived onion-like carbons on the electrocatalytic properties of Pd-MnO2 for the oxidation of glycerol in alkaline medium[J]. Chem-ElectroChem, 2016, 3(12): 2243-2251. |
[136] |
Ahmad M S, Singh S, Cheng C K, Ong H R, Abdullah H, Khan M R, Wongsakulphasatch S. Glycerol electro-oxidation to dihydroxyacetone on phosphorous-doped Pd/CNT nanoparticles in alkaline medium[J]. Catal. Commun., 2020, 139: 105964.
doi: 10.1016/j.catcom.2020.105964 URL |
[137] |
Kang Y M, Wang W, Pu Y L, Li J M, Chai D, Lei Z Q. An effective Pd-NiOx-P composite catalyst for glycerol electrooxidation: Co-existed phosphorus and nickel oxide to enhance performance of Pd[J]. Chem. Eng. J., 2017, 308: 419-427.
doi: 10.1016/j.cej.2016.09.087 URL |
[138] |
Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)[J]. J. Power Sources, 2009, 190(2): 241-251.
doi: 10.1016/j.jpowsour.2009.01.044 URL |
[139] |
Wang H B, Thia L, Li N, Ge X M, Liu Z L, Wang X. Pd nanoparticles on carbon nitride-graphene for the selective electro-oxidation of glycerol in alkaline solution[J]. ACS Catal., 2015, 5(6): 3174-3180.
doi: 10.1021/acscatal.5b00183 URL |
[140] |
Weber M, Collot P, El Gaddari H, Tingry S, Bechelany M, Holade Y. Enhanced catalytic glycerol oxidation activity enabled by activated-carbon-supported palladium catalysts prepared through atomic layer deposition[J]. ChemElectroChem, 2018, 5(5): 743-747.
doi: 10.1002/celc.201701196 URL |
[141] |
Almeida T S D, Guima K-E, Silveira R M, da Silva G C, Martines M A U, Martins C A. A Pd nanocatalyst supported on multifaceted mesoporous silica with enhanced activity and stability for glycerol electrooxidation[J]. RSC Adv., 2017, 7(20): 12006-12016.
doi: 10.1039/C6RA28864B URL |
[142] |
Arjona N, Rivas S, Álvarez-Contreras L, Guerra-Balcázar M, Ledesma-García J, Kjeang E, Arriaga L G. Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes[J]. New J. Chem., 2017, 41(4): 1854-1863.
doi: 10.1039/C6NJ03739A URL |
[143] |
Habibi E, Razmi H. Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media[J]. Int. J. Hydrogen Energy, 2012, 37(22): 16800-16809.
doi: 10.1016/j.ijhydene.2012.08.127 URL |
[144] |
Su L, Jia W Z, Schempf A, Lei Y. Palladium/titanium dioxide nanofibers for glycerol electrooxidation in alkaline medium[J]. Electrochem. Commun., 2009, 11(11): 2199-2202.
doi: 10.1016/j.elecom.2009.09.030 URL |
[145] |
Shang C S, Hong W, Guo Y X, Wang J, Wang E K. Water-based synjournal of palladium trigonal bipyramidal/tetrahedral nanocrystals with enhanced electrocatalytic oxidation activity[J]. Chem. Eur. J., 2017, 23(24): 5799-5803.
doi: 10.1002/chem.v23.24 URL |
[146] |
Guima K E, Alencar L M, da Silva G C, Trindade M A G, Martins C A. 3D-printed electrolyzer for the conversion of glycerol into tartronate on Pd nanocubes[J]. ACS Sustain. Chem. Eng., 2018, 6(1): 1202-1207.
doi: 10.1021/acssuschemeng.7b03490 URL |
[147] |
Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synjournal of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
doi: 10.1126/science.1140484 URL |
[148] |
Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G. Alloy tetrahexahedral Pd-Pt catalysts: Enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure[J]. Chem. Sci., 2012, 3(4): 1157-1161.
doi: 10.1039/c2sc00723a URL |
[149] |
Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage[J]. Chem. Soc. Rev., 2011, 40(7): 4167-4185.
doi: 10.1039/c0cs00176g URL |
[150] |
Liu M M, Wang L L, Zhao K N, Shi S S, Shao Q S, Zhang L, Sun X L, Zhao Y F, Zhang J J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synjournal, characterization, reaction mechanisms and electrochemical energy applications[J]. Energy Environ. Sci., 2019, 12(10): 2890-2923.
doi: 10.1039/C9EE01722D URL |
[151] |
Choi C H, Kim M, Kwon H C, Cho S J, Yun S, Kim H T, Mayrhofer K J J, Kim H, Choi M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nat. Commun., 2016, 7(1): 10922.
doi: 10.1038/ncomms10922 URL |
[152] |
Zhao D, Zhuang Z W, Cao X, Zhang C, Peng Q, Chen C, Li Y D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation[J]. Chem. Soc. Rev., 2020, 49(7): 2215-2264.
doi: 10.1039/c9cs00869a pmid: 32133461 |
[153] | Zhang Z Y, Xin L, Qi J, Chadderdon D J, Li W Z. Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels[J]. Appl. Catal. B - Environ. 2013, 136: 29-39. |
[154] |
Li Y, Wei X F, Chen L S, Shi J L, He M Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions[J]. Nat. Commun., 2019, 10(1): 5335.
doi: 10.1038/s41467-019-13375-z URL |
[155] |
Houache M S E, Safari R, Nwabara U O, Rafaideen T, Botton G A, Kenis P J A, Baranton S, Coutanceau C, Baranova E A. Selective electrooxidation of glycerol to formic acid over carbon supported Ni1-x Mx(M = Bi, Pd, and Au) nanocatalysts and coelectrolysis of CO2[J]. ACS Appl. Energy Mater., 2020, 3(9): 8725-8738.
doi: 10.1021/acsaem.0c01282 URL |
[156] |
Kosamia N M, Samavi M, Uprety B K, Rakshit S K. Valorization of biodiesel byproduct crude glycerol for the production of bioenergy and biochemicals[J]. Catalysts, 2020, 10(6): 609.
doi: 10.3390/catal10060609 URL |
[1] | 李子萌, 李章健, 方萍, 梅天胜. 电化学促进的镍催化的α-氰基乙酸酯的α-芳基化反应[J]. 电化学(中英文), 2024, 30(5): 2313004-. |
[2] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[3] | 蓝丽媛, 蒋洋叶, R. Daniel Little, 曾程初. 以芳基重氮盐为芳基前体电化学合成芳基取代的苯并噻吩和菲[J]. 电化学(中英文), 2024, 30(4): 2313002-. |
[4] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[5] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
[6] | 钱 朋,毕美香,王玉康,查正根,汪志勇. 电化学条件下α-C—H键的官能团化的研究进展[J]. 电化学(中英文), 2017, 23(3): 262-275. |
[7] | 王 欢,陆嘉星. 电羧化:一种固定CO2制备有机羧酸的有效途径[J]. 电化学(中英文), 2017, 23(3): 250-261. |
[8] | 宋秀丽, 贾瑞龙, 董文燕, 梁镇海. 乙炔电催化氧化制备草酸的机理研究[J]. 电化学(中英文), 2015, 21(4): 353-361. |
[9] | 王欢, 朱美侠, 吴腊霞, 徐晓明, 赵学如, 陆嘉星. 丙三醇碳酸酯的电合成研究[J]. 电化学(中英文), 2013, 19(4): 328-331. |
[10] | 苑慧萍, 郭勋, 邱新平, 朱文涛, 陈立泉, . Pt基催化剂对金属氧化物助催化作用[J]. 电化学(中英文), 2009, 15(4): 397-402. |
[11] | 陈妮娜, 陈日耀, 郑曦, 陈晓, 陈震, . 以Pb-(BrO_3~-/Br~-)为媒介间接电氧化合成双醛淀粉[J]. 电化学(中英文), 2009, 15(4): 458-461. |
[12] | 蔡燕红;陈力勤;陈日耀;郑曦;陈晓;陈震;. 超声波电氧化合成纳米MnO_2及其在制备甘油醛中的应用[J]. 电化学(中英文), 2007, 13(3): 325-328. |
[13] | 樊金红, 李军, 苏玉忠, 高浩其. 固定床反应器电合成乙醛酸的研究[J]. 电化学(中英文), 2002, 8(1): 73-77. |
[14] | 陈银生,张新胜,戴迎春,袁渭康. 固定床电解槽变电流成对电解合成乙醛酸[J]. 电化学(中英文), 2002, 8(1): 60-65. |
[15] | 褚道葆,沈广霞,周幸福,顾家山,林昌健,林华水. 高活性Ti基纳米TiO_2膜催化电极的制备[J]. 电化学(中英文), 2001, 7(2): 249-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||