[1] Konishi H, Yuasa T, Yoshikawa M. Thermal stability of Li1-yNixMn(1-x)/2Co(1-x)/2O2 layer-structured cathode materials used in Li-Ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6884-6888.
[2] Bak S-M, Hu E Y, Zhou Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601.
[3] Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2(x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130.
[4] Wei Y, Zheng J X, Cui S H, et al. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2[J]. Journal of the American Chemical Society, 2015, 137(26): 8364-8367.
[5] Uchida I, Fujiyoshi H, Waki S, et al. Microvoltammetric studies on single particles of battery active materials[J]. Journal of Power Sources, 1997, 68(1): 139-144.
[6] Dokko K, Nishizawa M, Horikoshi S, et al. In situ observation of LiNiO2 single-particle fracture during Li-ion extraction and insertion[J]. Electrochemical and Solid-State Letters, 2000, 3(3): 125-127.
[7] Munakata H, Takemura B, Saito T, et al. Evaluation of real performance of LiFePO4 by using single particle technique[J]. Journal of Power Sources, 2012, 217: 444-448.
[8] Huang Y H, Wang F M, Huang T T, et al. Micro-electrode linked cyclic voltammetry study reveals ultra-fast discharge and high ionic transfer behavior of LiFePO4[J]. International Journal of Electrochemical Science, 2012, 7(2): 1205-1213.
[9] Dokko K, Nakata N, Suzuki Y, et al. High-rate lithium deintercalation from lithiated graphite single-particle electrode[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8646-8650.
[10] Zuleta M, Bjornbom P, Lundblad A. Effects of pore surface oxidation on electrochemical and mass-transport properties of nanoporous carbon[J]. Journal of The Electrochemical Society, 2005, 152(2): A270-A276.
[11] Nishikawa K, Munakata H, Kanamura K. In-situ observation of one silicon particle during the first charging[J]. Journal of Power Sources, 2013, 243: 630-634.
[12] Nishikawa K, Moon J, Kanamura K. In-situ observation of volume expansion behavior of a silicon particle in various electrolyte[J]. Journal of Power Sources, 2016, 302: 46-52.
[13] Wang F Q(王福庆), Wei Y M(魏奕民), Su Y Z(苏育专), et al. Fast and accurate evaluation of LiFePO4 cathode materials by single particle microelectrode[J]. Journal of Electrochemistry(电化学), 2015, 21(6): 566-571.
[14] Miller D J, Proff C, Wen J G, et al. Observation of microstructural evolution in Li battery cathode oxide particles by In situ electron microscopy[J]. Advanced Energy Materials, 2013, 3(8): 1098-1103.
[15] Xie J, Imanishi N, Zhang T, et al. Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering[J]. Electrochimica Acta, 2009, 54(20): 4631-4637. |