欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2017, Vol. 23 ›› Issue (4): 429-434.  doi: 10.13208/j.electrochem.160411

• 研究论文 • 上一篇    下一篇

液态Wood合金在NaOH电解质溶液中的电毛细变形现象

张国堤,林巧力*, 陈剑虹, 曹睿   

  1. 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050
  • 收稿日期:2016-04-11 修回日期:2016-11-10 出版日期:2017-08-25 发布日期:2016-11-15
  • 通讯作者: 林巧力 E-mail:lqllinqiaoli@163.com
  • 基金资助:

    国家自然科学基金项目(No.51301083,No.51665031),甘肃省杰出青年基金(No.1506RJDA087)资助

Electric current induced flow and electrocapillary deformation of liquid Wood alloy in NaOH aqueous solution

ZHANG Guo-di , LIN Qiao-li*, CHENG Jian-hong,CAO Rui   

  1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology 730050 ,Lanzhou, China
  • Received:2016-04-11 Revised:2016-11-10 Published:2017-08-25 Online:2016-11-15
  • Contact: LIN Qiao-li E-mail:lqllinqiaoli@163.com

摘要:

本文研究了液态Wood合金在氢氧化钠电解质溶液中,通过施加外电场,进而诱发液态金属电毛细变形的现象. 当石墨电极伸入金属液滴内部时,通电后在金属表面发生的电极反应,促使金属表面形成氧化膜或去除氧化膜. 由于氧化膜与液态金属的表面张力存在巨大差异,通电后电极极性的变化可实现金属液滴形状的快速可逆变形.在液态金属与电解质溶液之间形成的双电子层中,当两侧聚集同极性电荷时将降低界面张力.为维持通电后体系自由能最小,将迫使液体金属增大与溶液之间的界面面积,在宏观上表现为液体金属的变形,由于液态金属与氢氧化钠反应后自身携带负电荷,在电场力的作用下可有效地驱动液态金属在电解质溶液中的运动.

关键词: 电毛细作用, 铺展动力, 表面张力

Abstract: The phenomena of the electric current induced flow and electrocapillary deformation for a liquid Wood alloy in a NaOH electrolyte were studied. Electrocapillary behaviors for the liquid Wood alloy in NaOH electrolytes by applying external low voltages were investigated. The electrode reaction (redox reaction) induced the formation or removing removal of an oxide film, and further caused the drop deformation by decreasing or increasing an interfacial tension. The same polar charge in the electric double layer would also decrease the interfacial tension. In order to maintain the stability of system, the contact area of the interface would be expanded, and which induced induces the drop deformation macroscopically. When the liquid metal was charged by the chemical reaction in the solution, the electric field force is became an effective way to drive its movement in the electrolyte.

Key words: Capillarity, Spreading dynamics, Surface tension

中图分类号: