[1] Vielstich W, Lamm A, Gasteiger HA: Handbook of Fuel Cells: Fundamentals. Technology. Applications[J]. Wiley: New York 2003.
[2] Gasteiger HA, Kocha SS, Sompalli B, et al.: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B-Environmental 2005, 56:9-35.
[3] Mukerjee S, Srinivasan S: ENHANCED ELECTROCATALYSIS OF OXYGEN REDUCTION ON PLATINUM ALLOYS IN PROTON-EXCHANGE MEMBRANE FUEL-CELLS[J]. Journal of Electroanalytical Chemistry 1993, 357:201-24.
[4] Stamenkovic VR, Mun BS, Arenz M, et al.: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials 2007, 6:241-7.
[5] Mukerjee S, Srinivasan S, Soriaga MP, et al.: ROLE OF STRUCTURAL AND ELECTRONIC-PROPERTIES OF PT AND PT ALLOYS ON ELECTROCATALYSIS OF OXYGEN REDUCTION - AN IN-SITU XANES AND EXAFS INVESTIGATION[J]. Journal of the Electrochemical Society 1995, 142:1409-22.
[6] Watanabe M, Tsurumi K, Mizukami T, et al.: ACTIVITY AND STABILITY OF ORDERED AND DISORDERED CO-PT ALLOYS FOR PHOSPHORIC-ACID FUEL-CELLS[J]. Journal of the Electrochemical Society 1994, 141:2659-68.
[7] Koh S, Leisch J, Toney MF, et al.: Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers[J]. Journal of Physical Chemistry C 2007, 111:3744-52.
[8] Stamenkovic V, Schmidt TJ, Ross PN, et al.: Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces[J]. Journal of Electroanalytical Chemistry 2003, 554:191-9.
[9] Toda T, Igarashi H, Uchida H, et al.: Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co[J]. Journal of the Electrochemical Society 1999, 146:3750-6.
[10] Paulus UA, Wokaun A, Scherer GG, et al.: Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts[J]. Journal of Physical Chemistry B 2002, 106:4181-91.
[11] Bing YH, Liu HS, Zhang L, et al.: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction[J]. Chemical Society Reviews 2010, 39:2184-202.
[12] Stamenkovic V, Mun BS, Mayrhofer KJJ, et al.: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie-International Edition 2006, 45:2897-901.
[13] Han B, Carlton CE, Suntivich J, et al.: Oxygen Reduction Activity and Stability Trends of Bimetallic Pt0.5M0.5 Nanoparticle in Acid[J]. The Journal of Physical Chemistry C 2015, 119:3971-8.
[14] Zhang J, Yang HZ, Fang JY, et al.: Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra[J]. Nano Letters 2010, 10:638-44.
[15] Zhang C, Hwang SY, Trout A, et al.: Solid-State Chemistry-Enabled Scalable Production of Octahedral Pt–Ni Alloy Electrocatalyst for Oxygen Reduction Reaction[J]. Journal of the American Chemical Society 2014, 136:7805-8.
[16] Choi S-I, Xie S, Shao M, et al.: Controlling the Size and Composition of Nanosized Pt–Ni Octahedra to Optimize Their Catalytic Activities toward the Oxygen Reduction Reaction[J]. ChemSusChem 2014, 7:1476-83.
[17] Chou S-W, Lai Y-R, Yang YY, et al.: Uniform size and composition tuning of PtNi octahedra for systematic studies of oxygen reduction reactions[J]. Journal of Catalysis 2014, 309:343-50.
[18] Zhang J, Fang JY: A General Strategy for Preparation of Pt 3d-Transition Metal (Co, Fe, Ni) Nanocubes[J]. Journal of the American Chemical Society 2009, 131:18543-7.
[19] Gilroy KD, Ruditskiy A, Peng H-C, et al.: Bimetallic Nanocrystals: Syntheses, Properties, and Applications[J]. Chemical Reviews 2016, 116:10414-72.
[20] Kang YJ, Murray CB: Synthesis and Electrocatalytic Properties of Cubic Mn-Pt Nanocrystals (Nanocubes)[J]. Journal of the American Chemical Society 2010, 132:7568-+.
[21] Maillard F, Eikerling M, Cherstiouk OV, et al.: Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility[J]. Faraday Discussions 2004, 125:357-77.
[22] Yano H, Inukai J, Uchida H, et al.: Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and Pt-195 EC-NMR study[J]. Physical Chemistry Chemical Physics 2006, 8:4932-9.
[23] Mayrhofer KJJ, Blizanac BB, Arenz M, et al.: The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electocatalysis[J]. Journal of Physical Chemistry B 2005, 109:14433-40.
[24] Yang H, Tang Y, Zou S: Electrochemical removal of surfactants from Pt nanocubes[J]. Electrochemistry Communications 2014, 38:134-7.
[25] Aran-Ais RM, Vidal-Iglesias FJ, Solla-Gullon J, et al.: Electrochemical Characterization of Clean Shape-Controlled Pt Nanoparticles Prepared in Presence of Oleylamine/Oleic Acid[J]. Electroanalysis 2015, 27:945-56.
[26] Solla-Gullon J, Vidal-Iglesias FJ, Lopez-Cudero A, et al.: Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles[J]. Physical Chemistry Chemical Physics 2008, 10:3689-98.
[27] Mayrhofer KJJ, Juhart V, Hartl K, et al.: Adsorbate-Induced Surface Segregation for Core-Shell Nanocatalysts[J]. Angewandte Chemie-International Edition 2009, 48:3529-31.
[28] Li D, Wang C, Strmcnik DS, et al.: Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case[J]. Energy & Environmental Science 2014, 7:4061-9.
[29] Kitchin JR, Norskov JK, Barteau MA, et al.: Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals[J]. Journal of Chemical Physics 2004, 120:10240-6.
[30] Medford AJ, Vojvodic A, Hummelshøj JS, et al.: From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis[J]. Journal of Catalysis 2015, 328:36-42.
[31] Markovic NM, Schmidt TJ, Stamenkovic V, et al.: Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review[J]. Fuel Cells 2001, 1:105-16.
[32] Viswanathan V, Hansen HA, Rossmeisl J, et al.: Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces[J]. ACS Catalysis 2012, 2:1654-60. |