[1] Chen S G, Wei Z D, Guo L, et al. Enhanced dispersion and durability of Pt nanoparticles on a thiolated CNT support[J]. Chemical Communications, 2011, 47: 10984-10986.[2] Chen S G, Wei Z D, Qi X Q, et al. Nanostructured polyaniline-decorated Pt/C@PANI core@shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255.[3] Chen S. G, Wei Z D, Li H, et al. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition[J]. Chemical Communications, 2010, 46: 8782-8784. [4] Luo J(罗瑾), Yang L F(杨乐夫), Chen B H(陈秉辉), et al. Ternary alloy electrocatalysts for oxygen reduction reaction[J]. Journal of Electrochemistry(电化学), 2012, 18(6): 496-507.[5] Lv H F(吕海峰),Cheng N C(程年才), Mu S C(木士春), et al. Electrocatalytic properties of Pd modified Pt/C catalysts for proton exchange membrane fuel cell[J]. Acta Chimica Sinica(化学学报), 2009, 67(14): 1680-1684.[6] Jasinski R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201: 1212-1213.[7] Lee J, Aida T. “Bucky gels” for tailoring electroactive materials and devices: The composites of carbon materials with ionic liquids[J]. Chemical Communications, 2011, 47: 6757-6762.[8] Maruyama J, Abe I. Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output[J]. Chemical Communications, 2007, 27: 2879-2881.[9] Liang Y Y, Li Y G, Wang H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10: 780-786.[10] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen[J]. Science, 2009, 323(5915): 760-764.[11] Zhang J, Sasaki K, Sutter E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809): 220-224.[12] Sun Y Q, Li C, Xu Y X, et al. Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst[J]. Chemical Communications, 2010, 46: 4740-4742.[13] Wang G J, Cheng F, Yu Y, et al. SC-IrO2NR-carbon hybrid: A catalyst with high electrochemical stability for oxygen reduction[J]. SCIENCE CHINA Chemistry, 2013, 56(1): 131-136.[14] Dai X F(戴先逢), Zhen M F(郑明富), Xu P(徐攀), et al. Electrochemical behavior of pyridine-doped carbon-supported Co-Phthalocyanine (Py-CoPc/C) for oxygen reduction reaction and its application to fuel cell[J]. Acta Physico-Chimica Sinica(物理化学学报), 2013, 29(8): 1753-1761.[15] Serov A, Kwak C. Review of non-platinum anode catalysts for DMFC and PEMFC application[J]. Applied Catalysis B-Environmental, 2009, 90(3/4): 313-320.[16] Su D S, Zhang J, Frank B, et al. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem, 2010, 3(2): 169-180.[17] Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode[J]. Science, 2008, 321(5889): 671-674.[18] Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition, 2011, 50(31):7132-7135.[19] Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie-International Edition, 2011, 50(14): 3257-3261.[20] Wang L, Ambrosi A, Pumera M. “Metal-free” catalytic oxygen reduction reaction on heteroatomdoped graphene is caused by trace metal impurities[J]. Angewandte Chemie-International Edition, 2013, 52(51): 13818-13821.[21] Zhao Y, Yang L J, Hu Z, et al. Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. Journal of the American Chemical Society, 2013, 135(4): 1201-1204.[27] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80.[22] Okamoto Y. First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon[J]. Applied Surface Science, 2009, 256(1): 335-341.[23] Qu L, Liu Y, Baek J, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3): 1321-1326.[24] Yang S, Feng X L, Wang X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie-International Edition, 2011, 50(23): 5339-5343.[25] Sheng Z H, Gao H L, Bao W J, et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J]. Journal of Materials Chemistry, 2012, 22(2): 390-395.[26] Yang Z, Yao Z, Li G F, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211.[27] Yao Z, Nie H G, Yang Z, et al. Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium[J]. Chemical Communications, 2012, 48(7): 1027-1029.[28] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction[J]. Angewandte Chemie-International Edition, 2010, 49(14): 2565-2569.[29] Shao Y Y, Zhang S, Engelhard M H, et al. Nitrogen-doped graphene and its electrochemical applications[J]. Journal of Materials Chemistry, 2010, 20(35): 7491-7496.[30] Yu D S, Zhang Q, Dai L M, et al. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction[J]. Journal of the American Chemical Society, 2010, 132(43): 15127-15129.[31] Wang S Y, Yu D S, Dai L M, et al. Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2011, 133(14): 5182-5185.[32] Yu D S, Nagelli E, Du F, et al. Metal-free carbon nanomaterials become more active than metal catalysts and last longer[J]. Journal of Physical Chemistry Letters, 2010, 1(14): 2165-2173.[33] Wang X, Lee J, Zhu Q, et al. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction[J]. Chemistry of Materials, 2010, 22(7): 2178-2180.[34] Zhang J, Liu X, Blume R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322(5898): 73-77.[35] Longhua T, Ying W, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials, 2009, 19(17): 2782-2789.[36] Okotrub A V, Bulusheva L G, Kudashov A G, et al. Orientation ordering of N2 molecules in vertically aligned CNx nanotubes[J]. Applied Physics A-Materials Science & Processing, 2009, 94(3): 437-443. [37] Biddinger E J, Deak D V, Ozkan U S. Nitrogen-containing carbon N as oxygen-reduction catalysts[J]. Topics in Catalysis, 2009, 52(11): 1566-1574.[38] Sun C L, Wang H W, Hayashi M, et al. Atomic-scale deformation in N-doped carbon nanotubes[J]. Journal of the American Chemical Society, 2006, 128(26): 8368-8369.[39] Terrones M, Ajayan P M, Terrones H, et al. N-doping and coalescence of carbon nanotubes: Synthesis and electronic properties[J]. Applied Physics A-Materials Science & Processing, 2002, 74(3): 355-361.[40] Panchakarla L S, Govindaraj A, Rao C N R. Nitrogen-and boron-doped double-walled carbon nanotubes[J]. ACS Nano, 2007, 1(5): 494-500.[41] Wong W Y, Daud W R W, Mohamad A B, et al. Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9370-9386.[42] Xiong K, Wei Z D et al. Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction[J]. Journal of Power Sources 2012, 215: 216-220[43] Maldonado S, Stevenson K J. Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes[J]. Journal of Physical Chemistry B, 2005, 109(10): 4707-4716.[44] Chen S, Wang X Z, Hu Z, et al. Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Advanced Materials, 2012, 24(41): 5593-5597.[45] Jin H, Zhang H M, Zhong H X, et al. Nitrogen-doped carbon xerogel: A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmental Science, 2011, 4(9): 3389-3394.[46] Ma G X, Jia R R, Zhao J H, et al. Nitrogen-doped hollow carbon nanoparticles with excellent oxygen reduction performances and their electrocatalytic kinetics[J]. Journal of Physical Chemistry C, 2011, 115(50): 25148-25154.[47] Yu D S, Wei L, Chen Y, et al. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction[J]. Nanoscale, 2013, 5(8): 3457-3464.[48] Deng D H, Pan X L, Yu L, et al. Toward N-doped graphene via solvothermal synthesis[J]. Chemistry of Materials, 2011, 23(5): 1188-1193.[49] Zhang S M , Zhang H Y, Chen S. L, et al. Fe-N doped carbon nanotube/graphene composite: Facile synthesis and superior electrocatalytic activity[J]. Journal of Materials Chemistry A, 2013, 1(10): 3302-3308.[50] Deng D H, Yu L, Chen X Q, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angewandte Chemie-International Edition, 2012, 52(1): 371-375.[51] Luo Z Q, Lim S H, Lin J Y, et al. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property[J]. Journal of Materials Chemistry, 2011, 21(22): 8038-8044.[52] Rao C V, Cabrera C R, IshikawaIn Y. Search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J]. Journal of Physical Chemistry Letters, 2010, 1(18): 2622-2627.[53] Unni S M, Devulapally S, et al. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction[J]. Journal of Materials Chemistry, 2012, 22(44): 23506-23513.[54] Kundu S, Nagaia T C, Muhler M, et al. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2009, 113(32): 14302-14310.[55] Dorjgotov A, Ok J, Jeon Y K, et al. Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction[J]. Journal of Applied Electrochemistry, 2013, 43(4): 387-397.[56] Sidik R A, Anderson A B, Subramanian N P, et al. O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory[J]. Journal of Physical Chemistry B, 2006, 110(4): 1787-1793.[57] Liang Y Y, Li Y G, Wang H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10): 780-786.[58] Wang S Y, Zhang L P, Xia Z H, et al. BNC graphene as efficient metal-free electrocatalyst for the oxygen reduction[J]. Angewandte Chemie-International Edition, 51(17): 4209-4212.[59] Ding W, Wei Z D, Chen S G, et al. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angewandte Chemie-International Edition, 2013, 52(45): 11755-11759.[60] Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition, 2011, 50(31): 7132-7135.[61] Li R, Wei Z D, Gou X L, et al. Phosphorus-doped grapheme nanosheets as efficient metal-free oxygen reduction electrocatalysts[J]. RSC Advances, 2013, 3(25): 9978-9984.[62] Sun X J, Xu W L, Xing W, et al. Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction[J]. ACS Catalysis, 2013, 3(8): 1726-1729.[63] Choi C H, Park S H, Woo S I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity[J]. ACS Nano, 2012, 6(8): 7084-7091.[64] Ci L J, Song L, Ajayan P M, et al. Atomic layers of hybridized boron nitride and graphene domains[J]. Nature Materials, 2010, 9(5): 430-435.[65] Ci L J, Song L, Yakobson B I, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 2010, 10(8): 3209-3215.[66] Ozaki J I, Kimura N, Oya A, et al. Preparation and oxygen reduction activity of BN-doped carbons[J]. Carbon, 2007, 45(9): 1847-1853.[67] Choi C H, Park S H, Woo S I. Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions[J]. Green Chemistry, 2011, 13(2): 406-412.[68] Subramanian N P, Nallathambi V, Popov B N, et al. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2009, 188(1): 38-44.[69] Choi C H, Park S H, Woo S I. Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: Effects of the amount of P-doping on the physical and electrochemical properties of carbon[J]. Journal of Materials Chemistry, 2012, 22(24): 12107-12115.[70] Liang J, Jiao Y, Qiao S Z, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie-International Edition, 2012, 51(46): 11496-11500.[71] Wang S Y, Roy A, Dai L M, et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by Co-doping with boron and nitrogen[J]. Angewandte Chemie-International Edition, 2011, 50(49): 11756-11760.[72] Wang S Y, Zhang L P, Dai L M, et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition, 2012, 51(17): 4209-4212. |