欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 综述 •    

全钒液流电池电极材料研究进展

王文琪a#, 金杰b#, 汪丽敏a, c*,刘馨月a, 程涛a, 厚镛a, 薛涵a, 王志宇a, 刘博a, 刘佳保a, 路旭斌a*   

  1. a. 兰州交通大学材料科学与工程学院,兰州 730070; b. 乌鲁木齐铁路局,中铁乌鲁木齐基团有限公司, 新疆 830009; c. 兰州交通大学机电工程学院,兰州 730070.
  • 发布日期:2025-10-13
  • 通讯作者: 汪丽敏, 路旭斌 E-mail:limin.w@163.com; xubin.lu@mail.lzjtu.cn

Current Research Progress on Electrode Materials for All-vanadium Redox Flow Batteries

Wenqi Wanga#, Jie Jinb#, Limin Wanga, c*, Xinyue Liua, Tao Chenga, Yong Houa, Han Xuea, Zhiyu Wanga, Bo Liua, Jiabao Liua, Xubin Lua*   

  1. a. School of Materials Science and Engineering,Lanzhou Jiaotong University, Lanzhou, 730070, China; b. Urumqi railway station China Railway Urumqi Group Co.,Ltd., Urumqi,830009,China; c. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China. # These authors contributed equally to this work.
  • Online:2025-10-13
  • Contact: Limin Wang, Xubin Lu E-mail:limin.w@163.com; xubin.lu@mail.lzjtu.cn

摘要:

全钒液流电池的活性物质存在于电解质中,电极不参与反应,但电极是VO2+/VO2+ 和V2+/V3+活性物质吸附,进行电子传递与离子转换的有效场所。促进VO2+/VO2+和V2+/V3+反应的缓慢电荷转移特性是目前全钒液流电池电极材料研究工作的瓶颈,这主要是由于电极催化性能差以及催化剂与电极的附着力弱造成的。针对课题研究进展及以上关键科学问题,本文对当前全钒液流电池用电极材料的设计与制备方法进行了综述。

首先,综述了VRFB的发展历史、工作原理、应用现状以及具有的优缺点;其次,就VRFB在国内外的研究现状,以及发展至今存在的问题进行了归纳总结;再次总结了VRFB电极材料的分类,详述了各类电极的优缺点;最后,梳理了碳基电极材料的制备及在全钒液流电池中的应用,为课题组构筑高效双功能催化剂提供借鉴和实现高效、稳定的全钒液流电池提供的方法和基础。

关键词: 全钒液流电池, 电极材料, 碳基纳米材料, 缺陷可控

Abstract: The redox active species in all-vanadium redox flow batteries (VRFBs) reside in the electrolyte, while the heterogeneous reactions occur on the electrode surface; the electrode is therefore the decisive platform for dynamic adsorption, electron transfer, and ion conversion, especially for the VO2+/VO2+ and V2+/V3+ couples. One of the major challenges for VRFB is the slow charge transfer in VO2+/VO2+ and V2+/V3+ reactions, mainly caused by poor catalytic performance of electrodes and weak adhesion of catalysts to electrodes. This review focuses on the key challenges and recent advancements in VRFB. It begins with an overview of VRFB, including their history, working principles, applications, and the advantages and limitations associated with their use. One persistent, under-addressed trade-off is that strategies that boost apparent activity (e.g., high defect density or surface area) can degrade adhesion and cycling durability under flow shear; activity should therefore be co-reported with adhesion and durability descriptors.  Addressing this trade-off is critical to improving overall efficiency and stability in VRFB systems. A comprehensive discussion of various electrode materials is presented, categorized by their properties and preparation methods. Special emphasis is placed on the synthesis and application of carbon-based electrode materials, highlighting their potential in addressing these challenges. Finally, we map materials-level gains to stack- and system-level metrics, and outline strategies, with a focus on bifunctional and in-situ grown catalysts, for achieving high-efficiency, high-stability VRFBs.

Key words: Vanadium redox flow batteries, Electrode material, Carbon-based nanomaterials, Defect-tailor