电化学(中英文) ›› 2024, Vol. 30 ›› Issue (1): 2305101. doi: 10.13208/j.electrochem.2305101
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2023-05-10
修回日期:
2023-08-08
接受日期:
2023-08-22
出版日期:
2024-01-28
发布日期:
2023-09-09
Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng*(), Ji-Wei Ma*()
Received:
2023-05-10
Revised:
2023-08-08
Accepted:
2023-08-22
Published:
2024-01-28
Online:
2023-09-09
Contact:
*Hong-Fei Cheng, E-mail: 摘要:
在碱性介质中,由于电极材料的较高的稳定性,电催化析氢反应(HER)具有实现大规模制氢的巨大潜力。然而,即使对于最突出的铂催化剂,HER在碱性介质中的反应动力学也比在酸性介质中慢2-3个数量级,这是由于碱性环境下质子的浓度较低。异质结构催化剂具有多种结构优势,研究表明,构建异质结构电催化剂是促进碱性HER动力学的有效策略。协同效应是异质结构的一个独特特征,这意味着一个功能活性位点作为水解离的促进剂,另一个活性位点则负责适度的氢吸附,从而协同提高HER催化性能。此外,异质结构中的每个构建模块都是可调节的,为构建最佳催化剂提供了更多的灵活性和可能性。同时,由于界面处两个组分之间存在费米能级差,可以合理地调控每个组分的电子结构,从而大幅度提高碱性介质中的HER催化性能。随着对纳米结构的深入理解,人们开发了更先进的设计策略来构建高性能异质结构电催化剂。本文综述了异质结构催化剂在碱性HER方面的最新发展,以及构建界面异质结构以促进碱性HER动力学性能的合理设计原则。我们首先介绍了HER在碱性介质中的基本反应途径,然后详细讨论了促进碱性HER动力学的新兴有效策略,包括协同效应、应变效应、电子相互作用、相工程和结构工程,最后提出了未来面向实际应用的新型异质结构催化剂设计所面临的挑战和研究机遇。
马海斌, 周晓延, 李嘉艺, 程洪飞, 马吉伟. 用于促进碱性介质中析氢反应动力学的异质结构电催化剂的合理设计[J]. 电化学(中英文), 2024, 30(1): 2305101.
Hai-Bin Ma, Xiao-Yan Zhou, Jia-Yi Li, Hong-Fei Cheng, Ji-Wei Ma. Rational Design of Heterostructured Nanomaterials for Accelerating Electrocatalytic Hydrogen Evolution Reaction Kinetics in Alkaline Media[J]. Journal of Electrochemistry, 2024, 30(1): 2305101.
[1] |
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
doi: 10.1038/nature11115 |
[2] |
Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angew. Chem. Int. Ed., 2015, 54(1): 52-65.
doi: 10.1002/anie.201407031 pmid: 25384712 |
[3] |
Yan Y, He T, Zhao B, Qi K, Liu H, Xia B Y. Metal/covalent-organic frameworks-based electrocatalysts for water splitting[J]. J. Mater. Chem. A, 2018, 6(33): 15905-15926.
doi: 10.1039/C8TA05985C URL |
[4] |
Pan J, Xu Y Y, Yang H, Dong Z, Liu H, Xia B Y. Advanced architectures and relatives of air electrodes in Zn-air batteries[J]. Adv. Sci., 2018, 5(4): 1700691.
doi: 10.1002/advs.v5.4 URL |
[5] |
Zhang J Y, Wang H, Tian Y, Yan Y, Xue Q, He T, Liu H, Wang C, Chen Y, Xia B Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7649-7653.
doi: 10.1002/anie.v57.26 URL |
[6] |
Miao M, Pan J, He T, Yan Y, Xia B Y, Wang X. Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction[J]. Chemistry - A European Journal, 2017, 23(46): 10947-10961.
doi: 10.1002/chem.v23.46 URL |
[7] |
Lu F, Zhou M, Zhou Y X, Zeng X H. First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: Basic principles and recent advances[J]. Small, 2017, 13(45): 1701931.
doi: 10.1002/smll.v13.45 URL |
[8] |
Mahmood N, Yao Y, Zhang J W, Pan L, Zhang X, Zou J J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions[J]. Adv. Sci., 2018, 5(2): 1700464.
doi: 10.1002/advs.v5.2 URL |
[9] |
Zheng Y, Jiao Y, Vasileff A, Qiao S Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7568-7579.
doi: 10.1002/anie.201710556 pmid: 29194903 |
[10] |
Gong M, Wang D Y, Chen C C, Hwang B J, Dai H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction[J]. Nano Res., 2016, 9(1): 28-46.
doi: 10.1007/s12274-015-0965-x URL |
[11] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: insights into materials design[J]. Science, 2017, 355(6321): eaad4998.
doi: 10.1126/science.aad4998 URL |
[12] |
Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260.
doi: 10.1126/science.1211934 pmid: 22144621 |
[13] |
Yang H C, Wang C H, Hu F, Zhang Y J, Lu H, Wang Q B. Atomic-scale pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction[J]. Sci. China Mater., 2017, 60(11): 1121-1128.
doi: 10.1007/s40843-017-9035-8 URL |
[14] |
Li W B, Song Q Q, Li M, Yuan Y F, Zhang J H, Wang N, Yang Z H, Huang J F, Lu J, Li X F. Chemical heterointerface engineering on hybrid electrode materials for electrochemical energy storage[J]. Small Methods, 2021, 5(8): 2100444.
doi: 10.1002/smtd.v5.8 URL |
[15] |
Shao Q, Wang P T, Huang X Q. Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis[J]. Adv. Funct. Mater., 2019, 29(3): 1806419.
doi: 10.1002/adfm.v29.3 URL |
[16] |
Du P, Cao L, Zhang B, Wang C H, Xiao Z M, Zhang J F, Wang D, Ou X. Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries[J]. Renew. Sust. Energ. Rev., 2021, 151: 111640.
doi: 10.1016/j.rser.2021.111640 URL |
[17] | Zheng D, Yu L H, Liu W X, Dai X J, Niu X X, Fu W Q, Shi W H, Wu F F, Cao X H. Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts[J]. Cell Rep. Phys. Sci., 2021, 2(6): 100443. |
[18] |
Chen P Z, Tong Y, Wu C Z, Xie Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis[J]. Acc. Chem. Res., 2018, 51(11): 2857-2866.
doi: 10.1021/acs.accounts.8b00266 URL |
[19] |
Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nat. Nanotechnol., 2017, 12(5): 441-446.
doi: 10.1038/nnano.2016.304 pmid: 28192390 |
[20] |
Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts[J]. Nat. Energy, 2019, 4(6): 430-433.
doi: 10.1038/s41560-019-0407-1 |
[21] |
Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chem. Soc. Rev., 2015, 44(15): 5148-5180.
doi: 10.1039/c4cs00448e pmid: 25886650 |
[22] |
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chem. Soc. Rev., 2015, 44(8): 2060-2086.
doi: 10.1039/c4cs00470a pmid: 25672249 |
[23] |
Zhu J, Hu L, Zhao P, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2): 851-918.
doi: 10.1021/acs.chemrev.9b00248 pmid: 31657904 |
[24] |
Zhou H, Yu F, Sun J, He R, Chen S, Chu C W, Ren Z. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation[J]. PNAS, 2017, 114(22): 5607-5611.
doi: 10.1073/pnas.1701562114 URL |
[25] |
Wu H B, Xia B Y, Yu L, Yu X Y, Lou X W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nat. Commun., 2015, 6(1): 6512.
doi: 10.1038/ncomms7512 |
[26] |
Yin J, Fan Q H, Li Y X, Cheng F Y, Zhou P P, Xi P X, Sun S H. Ni-C-N nanosheets as catalyst for hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2016, 138(44): 14546-14549.
pmid: 27775881 |
[27] |
Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C[J]. Energy Environ. Sci., 2017, 10(3): 788-798.
doi: 10.1039/C6EE03768B URL |
[28] |
Tan Y W, Wang H, Liu P, Cheng C, Zhu F, Hirata A, Chen M W. 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production[J]. Adv. Mater., 2016, 28(15): 2951-2955.
doi: 10.1002/adma.v28.15 URL |
[29] |
Hu J, Zhang C X, Jiang L, Lin H, An Y M, Zhou D, Leung M K H, Yang S H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393.
doi: 10.1016/j.joule.2017.07.011 URL |
[30] |
Staszak-Jirkovský J, Malliakas Christos D, Lopes Pietro P, Danilovic N, Kota Subrahmanyam S, Chang K C, Genorio B, Strmcnik D, Stamenkovic Vojislav R, Kanatzidis M G, Markovic N M. Design of active and stable Co-Mo-Sxchalcogels as pH-universal catalysts for the hydrogen evolution reaction[J]. Nat. Mater., 2016, 15(2): 197-203.
doi: 10.1038/nmat4481 pmid: 26618882 |
[31] |
Martin-Sabi M, Soriano-López J, Winter R S, Chen J J, Vilà-Nadal L, Long D L, Galán-Mascarós J R, Cronin L. Redox tuning the weakley-type polyoxometalate archetype for the oxygen evolution reaction[J]. Nat. Catal., 2018, 1(3): 208-213.
doi: 10.1038/s41929-018-0037-1 pmid: 30079397 |
[32] |
Liu B, Wang Y, Peng H Q, Yang R, Jiang Z, Zhou X, Lee C S, Zhao H, Zhang W. Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting[J]. Adv. Mater., 2018, 30(36): 1803144.
doi: 10.1002/adma.v30.36 URL |
[33] |
Yao R Q, Shi H, Wan W B, Wen Z, Lang X Y, Jiang Q. Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Mater., 2020, 32(10): 1907214.
doi: 10.1002/adma.v32.10 URL |
[34] |
Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L. Waveguide-integrated van der waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity[J]. Nat. Nanotechnol., 2020, 15(2): 118-124.
doi: 10.1038/s41565-019-0602-z pmid: 32015504 |
[35] |
Li Y, Zhang J W, Chen Q G, Xia X H, Chen M H. Emerging of heterostructure materials in energy storage: A review[J]. Adv. Mater., 2021, 33(27): 2100855.
doi: 10.1002/adma.v33.27 URL |
[36] |
Wang H, Tzeng Y K, Ji Y, Li Y, Li J, Zheng X, Yang A, Liu Y, Gong Y, Cai L, Li Y, Zhang X, Chen W, Liu B, Lu H, Melosh N A, Shen Z X, Chan K, Tan T, Chu S, Cui Y. Synergistic enhancement of electrocatalytic CO2 reduction to C2oxygenates at nitrogen-doped nanodiamonds/Cu interface[J]. Nat. Nanotechnol., 2020, 15(2): 131-137.
doi: 10.1038/s41565-019-0603-y |
[37] |
Du F, Shi L, Zhang Y T, Li T, Wang J L, Wen G H, Alsaedi A, Hayat T, Zhou Y, Zou Z G. Foam-like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water-splitting[J]. Appl. Catal., B, 2019, 253: 246-252.
doi: 10.1016/j.apcatb.2019.04.067 URL |
[38] |
Han X T, Niu Y Y, Yu C, Liu Z B, Huang H W, Huang H L, Li S F, Guo W, Tan X Y, Qiu J S. Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution[J]. Nano Energy, 2020, 69: 104367.
doi: 10.1016/j.nanoen.2019.104367 URL |
[39] |
An L, Zhang Z, Feng J, Lv F, Li Y, Wang R, Lu M, Gupta R B, Xi P, Zhang S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte[J]. J. Am. Chem. Soc., 2018, 140(50): 17624-17631.
doi: 10.1021/jacs.8b09805 pmid: 30403846 |
[40] |
Zheng X R, Han X P, Cao Y H, Zhang Y, Nordlund D, Wang J H, Chou S L, Liu H, Li L L, Zhong C, Deng Y D, Hu W B. Identifying dense NiSe2/CoSe2heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis[J]. Adv. Mater., 2020, 32(26): 2000607.
doi: 10.1002/adma.v32.26 URL |
[41] |
Wang P T, Qiao M, Shao Q, Pi Y C, Zhu X, Li Y F, Huang X Q. Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction[J]. Nat. Commun., 2018, 9(1): 4933.
doi: 10.1038/s41467-018-07419-z pmid: 30467320 |
[42] |
Xin Z K, Gao Y J, Gao Y, Song H W, Zhao J, Fan F, Xia A D, Li X B, Tung C H, Wu L Z. Rational design of dot-on-rod nano-heterostructure for photocatalytic CO2 reduction: pivotal role of hole transfer and utilization[J]. Adv. Mater., 2022, 34(3): 2106662.
doi: 10.1002/adma.v34.3 URL |
[43] |
Mei J, Liao T, Sun Z Q. 2D/2D heterostructures: Rational design for advanced batteries and electrocatalysis[J]. Energy Environ. Mater., 2022, 5(1): 115-132.
doi: 10.1002/eem2.v5.1 URL |
[44] |
Zhou W, Cheng C, Liu J, Tay Y Y, Jiang J, Jia X, Zhang J, Gong H, Hng H H, Yu T, Fan H J. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance[J]. Adv. Funct. Mater., 2011, 21(13): 2439-2445.
doi: 10.1002/adfm.v21.13 URL |
[45] |
Sun D D, Liu K H, Hu J P, Zhou J S. Antiblocking heterostructure to accelerate kinetic process for Na-ion storage[J]. Small, 2021, 17(4): 2006374.
doi: 10.1002/smll.v17.4 URL |
[46] |
Wang T S, Legut D, Fan Y C, Qin J, Li X F, Zhang Q F. Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode[J]. Nano Lett., 2020, 20(8): 6199-6205.
doi: 10.1021/acs.nanolett.0c02595 pmid: 32787187 |
[47] |
Wang L, Zhu Y H, Zeng Z H, Lin C, Giroux M, Jiang L, Han Y, Greeley J, Wang C, Jin J. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water[J]. Nano Energy, 2017, 31: 456-461.
doi: 10.1016/j.nanoen.2016.11.048 URL |
[48] |
Zhang B, Liu J, Wang J S, Ruan Y J, Ji X, Xu K, Chen C, Wan H Z, Miao L, Jiang J J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution[J]. Nano Energy, 2017, 37: 74-80.
doi: 10.1016/j.nanoen.2017.05.011 URL |
[49] |
Sheng W, Myint M, Chen J G, Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces[J]. Energy Environ. Sci., 2013, 6(5): 1509-1512.
doi: 10.1039/c3ee00045a URL |
[50] | Dinh C T, Jain A, De Arquer F P G, De Luna P, Li J, Wang N, Zheng X, Cai J, Gregory B Z, Voznyy O, Zhang B, Liu M, Sinton D, Crumlin E J, Sargent E H. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules[J]. Nat. Energy, 2019, 4(2): 107-114. |
[51] |
Tao H B, Zhang J, Chen J, Zhang L, Xu Y, Chen J G, Liu B. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis[J]. J. Am. Chem. Soc., 2019, 141(35): 13803-13811.
doi: 10.1021/jacs.9b01834 pmid: 31424926 |
[52] |
Mccrum I T, Koper M T M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum[J]. Nat. Energy, 2020, 5(11): 891-899.
doi: 10.1038/s41560-020-00710-8 |
[53] |
Anantharaj S, Noda S, Jothi V R, Yi S, Driess M, Menezes P W. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media[J]. Angew. Chem. Int. Ed., 2021, 60(35): 18981-19006.
doi: 10.1002/anie.202015738 pmid: 33411383 |
[54] |
Chen Y Y, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai Z H, Wan L J, Hu J S. Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution[J]. Adv. Mater., 2017, 29(39): 1703311.
doi: 10.1002/adma.v29.39 URL |
[55] |
Zhang J, Wang T, Liu P, Liao Z Q, Liu S H, Zhuang X D, Chen M W, Zschech E, Feng X L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nat. Commun., 2017, 8(1): 15437.
doi: 10.1038/ncomms15437 URL |
[56] |
Brown D E, Mahmood M N, Man M C M, Turner A K. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions[J]. Electrochim. Acta, 1984, 29(11): 1551-1556.
doi: 10.1016/0013-4686(84)85008-2 URL |
[57] |
Mckone J R, Sadtler B F, Werlang C A, Lewis N S, Gray H B. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution[J]. ACS Catal., 2013, 3(2): 166-169.
doi: 10.1021/cs300691m URL |
[58] |
An Y M, Long X, Ma M, Hu J, Lin H, Zhou D, Xing Z, Huang B L, Yang S H. One-step controllable synthesis of catalytic Ni4Mo/MoOx/Cu nanointerfaces for highly efficient water reduction[J]. Adv. Energy Mater., 2019, 9(41): 1901454.
doi: 10.1002/aenm.v9.41 URL |
[59] |
Wang L, Lin C, Huang D K, Chen J M, Jiang L, Wang M K, Chi L F, Shi L, Jin J. Optimizing the volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum[J]. ACS Catal., 2015, 5(6): 3801-3806.
doi: 10.1021/cs501835c URL |
[60] |
Xu K, Ding H, Zhang M X, Chen M, Hao Z, Zhang L, Wu C Z, Xie Y. Regulating water-reduction kinetics in cobalt phosphide for enhancing her catalytic activity in alkaline solution[J]. Adv. Mater., 2017, 29(28): 1606980.
doi: 10.1002/adma.v29.28 URL |
[61] |
Zhang J, Wang T, Liu P, Liu S H, Dong R H, Zhuang X D, Chen M W, Feng X L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production[J]. Energy Environ. Sci., 2016, 9(9): 2789-2793.
doi: 10.1039/C6EE01786J URL |
[62] |
Weng Z, Liu W, Yin L C, Fang R, Li M, Altman E I, Fan Q, Li F, Cheng H M, Wang H. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis[J]. Nano Lett., 2015, 15(11): 7704-7710.
doi: 10.1021/acs.nanolett.5b03709 pmid: 26509583 |
[63] |
Zhang H, Maijenburg A W, Li X, Schweizer S L, Wehrspohn R B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting[J]. Adv. Funct. Mater., 2020, 30(34): 2003261.
doi: 10.1002/adfm.v30.34 URL |
[64] |
Wei J, Zhou M, Long A, Xue Y, Liao H, Wei C, Xu Z J. Heterostructured electrocatalysts for hydrogen evolution reaction under alkaline conditions[J]. Nano-Micro Lett., 2018, 10(4): 75.
doi: 10.1007/s40820-018-0229-x pmid: 30464940 |
[65] |
Li J, Li B, Huang H, Yan S, Yuan C Z, Wu N T, Guo D L, Liu X M. Polyvinylpyrrolidone gel based Pt/Ni(OH)2 heterostructures with redistributing charges for enhanced alkaline hydrogen evolution reaction[J]. J. Mater. Chem. A, 2021, 9(47): 27061-27071.
doi: 10.1039/D1TA06149F URL |
[66] |
Wang C, Qi L M. Heterostructured inter-doped ruthenium-cobalt oxide hollow nanosheet arrays for highly efficient overall water splitting[J]. Angew. Chem. Int. Ed., 2020, 59(39): 17219-17224.
doi: 10.1002/anie.v59.39 URL |
[67] |
Zhou A, Guo W J, Wang Y Q, Zhang J T. The rapid preparation of efficient mofeco-based bifunctional electrocatalysts via joule heating for overall water splitting[J]. J. Electrochem., 2022, 28(9): 2214007.
doi: 10.13208/j.electrochem.2214007 |
[68] |
Xu Q C, Zhang J H, Zhang H X, Zhang L Y, Chen L, Hu Y J, Jiang H, Li C Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting[J]. Energy Environ. Sci., 2021, 14(10): 5228-5259.
doi: 10.1039/D1EE02105B URL |
[69] |
Hammer B, Norskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240.
doi: 10.1038/376238a0 |
[70] |
Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nat. Chem., 2010, 2(6): 454-460.
doi: 10.1038/nchem.623 pmid: 20489713 |
[71] |
Karlberg G S. Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces[J]. Phys. Rev. B, 2006, 74(15): 153414.
doi: 10.1103/PhysRevB.74.153414 URL |
[72] |
Skúlason E, Tripkovic V, Björketun M E, Gudmundsdóttir S, Karlberg G, Rossmeisl J, Bligaard T, Jónsson H, Nørskov J K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations[J]. J. Phys. Chem. C, 2010, 114(42): 18182-18197.
doi: 10.1021/jp1048887 URL |
[73] |
Zhao G Q, Jiang Y Z, Dou S X, Sun W P, Pan H G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis[J]. Sci. Bull., 2021, 66(1): 85-96.
doi: 10.1016/j.scib.2020.09.014 pmid: 36654318 |
[74] |
Jiang Z L, Song S J, Zheng X B, Liang X, Li Z X, Gu H F, Li Z, Wang Y, Liu S H, Chen W X, Wang D S, Li Y D. Lattice strain and schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a n-modified carbon catalyst for H2 production[J]. J. Am. Chem. Soc., 2022, 144(42): 19619-19626.
doi: 10.1021/jacs.2c09613 URL |
[75] |
Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog. Phys., 1990, 53(10): 1253.
doi: 10.1088/0034-4885/53/10/001 URL |
[76] |
Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf. Sci., 1991, 38(2): 103-144.
doi: 10.1016/0079-6816(91)90007-Q URL |
[77] |
Xia Z H, Guo S J. Strain engineering of metal-based nanomaterials for energy electrocatalysis[J]. Chem. Soc. Rev., 2019, 48(12): 3265-3278.
doi: 10.1039/c8cs00846a pmid: 31089609 |
[78] |
Kim J, Kim H, Lee W J, Ruqia B, Baik H, Oh H S, Paek S M, Lim H K, Choi C H, Choi S I. Theoretical and experimental understanding of hydrogen evolution reaction kinetics in alkaline electrolytes with Pt-based core-shell nanocrystals[J]. J. Am. Chem. Soc., 2019, 141(45): 18256-18263.
doi: 10.1021/jacs.9b09229 pmid: 31621315 |
[79] |
Zong Z, Xu K, Li D L, Tang Z H, He W, Liu Z, Wang X F, Tian Y. Peptide templated Au@Pd core-shell structures as efficient bi-functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions[J]. J. Catal., 2018, 361: 168-176.
doi: 10.1016/j.jcat.2018.02.020 URL |
[80] |
Xiao Z C, Li Z, Jing Y H, Li T, Jiang D Y, Duan Y X, Ye Q X, Zhou L X, Chen A R, Cai J M. Compressive strain induced superior her performance of nickel in alkaline solution[J]. Phys. Chem. Chem. Phys., 2022, 24(45): 27923-27929.
doi: 10.1039/d2cp04600h pmid: 36367502 |
[81] |
Liang Q M, Wang X, Wan X W, Lin L X, Geng B J, Tian Z Q, Yang Y. Opportunities and challenges of strain engineering for advanced electrocatalyst design[J]. Nano Res., 2023, 16(7): 8655-8669.
doi: 10.1007/s12274-023-5641-y |
[82] |
Luo M C, Guo S J. Strain-controlled electrocatalysis on multi-metallic nanomaterials[J]. Nat. Rev. Mater., 2017, 2(11): 17059.
doi: 10.1038/natrevmats.2017.59 URL |
[83] |
Du X C, Huang J W, Zhang J J, Yan Y C, Wu C Y, Hu Y, Yan C Y, Lei T Y, Chen W, Fan C, Xiong J. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting[J]. Angew. Chem. Int. Ed., 2019, 58(14): 4484-4502.
doi: 10.1002/anie.201810104 pmid: 30277009 |
[84] |
Tang Y, Dong L, Wu H B, Yu X Y. Tungstate-modulated Ni/Ni(OH)2 interface for efficient hydrogen evolution reaction in neutral media[J]. J. Mater. Chem. A, 2021, 9(3): 1456-1462.
doi: 10.1039/D0TA09749G URL |
[85] |
Wang H X, Fu W W, Yang X H, Huang Z Y, Li J, Zhang H J, Wang Y. Recent advancements in heterostructured interface engineering for hydrogen evolution reaction electrocatalysis[J]. J. Mater. Chem. A, 2020, 8(15): 6926-6956.
doi: 10.1039/C9TA11646J URL |
[86] |
Greeley J, Nørskov J K, Kibler L A, El-Aziz A M, Kolb D M. Hydrogen evolution over bimetallic systems: Understanding the trends[J]. ChemPhysChem, 2006, 7(5): 1032-1035.
pmid: 16557633 |
[87] |
Zhang L Y, Hu M H, Li H, Cao B, Jing P, Liu B C, Gao R, Zhang J, Liu B. Boosting hydrogen evolution reaction via electronic coupling of cerium phosphate with molybdenum phosphide nanobelts[J]. Small, 2021, 17(40): 2102413.
doi: 10.1002/smll.v17.40 URL |
[88] |
Ji L, Wei Y, Wu P, Xu M, Wang T, Wang S, Liang Q, Meyer T J, Chen Z. Heterointerface engineering of Ni2P-Co2P nanoframes for efficient water splitting[J]. Chem. Mater., 2021, 33(23): 9165-9173.
doi: 10.1021/acs.chemmater.1c02609 URL |
[89] |
Xu D, Zhang S N, Chen J S, Li X H. Design of the synergistic rectifying interfaces in Mott-Schottky catalysts[J]. Chem. Rev., 2023, 123(1): 1-30.
doi: 10.1021/acs.chemrev.2c00426 URL |
[90] |
Wang N, Ning S L, Yu X L, Chen D, Li Z L, Xu J C, Meng H, Zhao D K, Li L G, Liu Q M, Lu B Z, Chen S W. Graphene composites with Ru-RuO2 heterostructures: highly efficient Mott-Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc-air batteries[J]. Appl. Catal., B, 2022, 302: 120838.
doi: 10.1016/j.apcatb.2021.120838 URL |
[91] |
Feng J X, Wu J Q, Tong Y X, Li G R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption[J]. J. Am. Chem. Soc., 2018, 140(2): 610-617.
doi: 10.1021/jacs.7b08521 URL |
[92] | Hu Z, Liu Q, Chou S L, Dou S X. Two-dimensional material-based heterostructures for rechargeable batteries[J]. Cell Rep. Phys. Sci., 2021, 2(1): 100286. |
[93] |
Cote L J, Kim J, Tung V C, Luo J, Kim F, Huang J. Graphene oxide as surfactant sheets[J]. Pure Appl. Chem., 2010, 83(1): 95-110.
doi: 10.1351/PAC-CON-10-10-25 URL |
[94] |
Backes C, Smith R J, Mcevoy N, Berner N C, Mccloskey D, Nerl H C, O’neill A, King P J, Higgins T, Hanlon D, Scheuschner N, Maultzsch J, Houben L, Duesberg G S, Donegan J F, Nicolosi V, Coleman J N. Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets[J]. Nat. Commun., 2014, 5(1): 4576.
doi: 10.1038/ncomms5576 |
[95] |
Backes C, Szydłowska B M, Harvey A, Yuan S, Vega-Mayoral V, Davies B R, Zhao P-L, Hanlon D, Santos E J G, Katsnelson M I, Blau W J, Gadermaier C, Coleman J N. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation[J]. ACS Nano, 2016, 10(1): 1589-1601.
doi: 10.1021/acsnano.5b07228 pmid: 26728793 |
[96] |
Wang L N, Hu P, Long Y, Liu Z, He X X. Recent advances in ternary two-dimensional materials: synthesis, properties and applications[J]. J. Mater. Chem. A, 2017, 5(44): 22855-22876.
doi: 10.1039/C7TA06971E URL |
[97] |
Liu W X, Yin R L, Xu X L, Zhang L, Shi W H, Cao X H. Structural engineering of low-dimensional metal-organic frameworks: Synthesis, properties, and applications[J]. Adv. Sci., 2019, 6(12): 1802373.
doi: 10.1002/advs.v6.12 URL |
[98] |
Geng D, Yang H Y. Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides[J]. Adv. Mater., 2018, 30(45): 1800865.
doi: 10.1002/adma.v30.45 URL |
[99] |
Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chem. Rev., 2017, 117(9): 6225-6331.
doi: 10.1021/acs.chemrev.6b00558 pmid: 28306244 |
[100] | Yuan D, Dou Y, He C T, Yu L, Xu L, Adekoya D, Xia Q, Ma J, Dou S X, Zhang S. Sulfur doping optimized intermediate energetics of FeCoOOH for enhanced oxygen evolution catalytic activity[J]. Cell Rep. Phys. Sci., 2021, 2(2): 100331. |
[101] |
Tang C, Zhong L, Zhang B, Wang H F, Zhang Q. 3D mesoporous van der waals heterostructures for trifunctional energy electrocatalysis[J]. Adv. Mater., 2018, 30(5): 1705110.
doi: 10.1002/adma.v30.5 URL |
[102] |
Muravev V, Parastaev A, Van Den Bosch Y, Ligt B, Claes N, Bals S, Kosinov N, Hensen E J M. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts[J]. Science, 2023, 380(6650): 1174-1179.
doi: 10.1126/science.adf9082 pmid: 37319196 |
[103] |
Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic N M. Trends in activity for the water electrolyser reactions on 3D M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts[J]. Nat. Mater., 2012, 11(6): 550-557.
doi: 10.1038/nmat3313 pmid: 22561903 |
[104] |
Zhu Z, Yin H, He C T, Al-Mamun M, Liu P, Jiang L, Zhao Y, Wang Y, Yang H G, Tang Z, Wang D, Chen X M, Zhao H. Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity[J]. Adv. Mater., 2018, 30(28): 1801171.
doi: 10.1002/adma.v30.28 URL |
[105] |
Chen X Y, Wan J W, Wang J, Zhang Q H, Gu L, Zheng L R, Wang N, Yu R B. Atomically dispersed ruthenium on nickel hydroxide ultrathin nanoribbons for highly efficient hydrogen evolution reaction in alkaline media[J]. Adv. Mater., 2021, 33(44): 2104764.
doi: 10.1002/adma.v33.44 URL |
[106] |
Yu X, Zhao J, Zheng L R, Tong Y, Zhang M, Xu G, Li C, Ma J, Shi G. Hydrogen evolution reaction in alkaline media: alpha- or beta-nickel hydroxide on the surface of platinum?[J]. ACS Energy Lett., 2018, 3(1): 237-244.
doi: 10.1021/acsenergylett.7b01103 URL |
[107] |
Zheng Y, Jiao Y, Zhu Y, Li L H, Han Y, Chen Y, Jaroniec M, Qiao S Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst[J]. J. Am. Chem. Soc., 2016, 138(49): 16174-16181.
pmid: 27960327 |
[108] |
Jin Y C, Zhang M X, Song L, Zhang M D. Research advances in amorphous-crystalline heterostructures toward efficient electrochemical applications[J]. Small, 2023, 19(10): 2206081.
doi: 10.1002/smll.v19.10 URL |
[109] |
Liu S Q, Wen H R, Ying G, Zhu Y W, Fu X Z, Sun R, Wong C P. Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: A mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis[J]. Nano Energy, 2018, 44: 7-14.
doi: 10.1016/j.nanoen.2017.11.063 URL |
[110] |
Yang M Y, Zhao M X, Yuan J, Luo J X, Zhang J J, Lu Z G, Chen D Z, Fu X Z, Wang L, Liu C. Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3N heterostructures toward high-durability and kinetically accelerated water splitting[J]. Small, 2022, 18(14): 2106554.
doi: 10.1002/smll.v18.14 URL |
[111] |
Dong Z H, Lin F, Yao Y H, Jiao L F. Crystalline Ni(OH)2/amorphous NiMoOxmixed-catalyst with Pt-like performance for hydrogen production[J]. Adv. Energy Mater., 2019, 9(46): 1902703.
doi: 10.1002/aenm.v9.46 URL |
[112] |
Huang S C, Meng Y Y, Cao Y F, Yao F, He Z J, Wang X X, Pan H, Wu M M. Amorphous NiWO4 nanoparticles boosting the alkaline hydrogen evolution performance of Ni3S2 electrocatalysts[J]. Appl. Catal., B, 2020, 274: 119120.
doi: 10.1016/j.apcatb.2020.119120 URL |
[113] |
Cao D, Wang J Y, Xu H X, Cheng D J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values[J]. Small, 2020, 16(37): 2000924.
doi: 10.1002/smll.v16.37 URL |
[114] |
Kuang M, Zhang J, Liu D, Tan H, Dinh K N, Yang L, Ren H, Huang W, Fang W, Yao J, Hao X, Xu J, Liu C, Song L, Liu B, Yan Q. Amorphous/crystalline heterostructured cobalt-vanadium-iron (oxy)hydroxides for highly efficient oxygen evolution reaction[J]. Adv. Energy Mater., 2020, 10(43): 2002215.
doi: 10.1002/aenm.v10.43 URL |
[115] |
Chang L, Sun Z, Hu Y H. 1T phase transition metal dichalcogenides for hydrogen evolution reaction[J]. Electrochem. Energy Rev., 2021, 4(2): 194-218.
doi: 10.1007/s41918-020-00087-y |
[116] |
Zhang T, Wu X X, Fan Y F, Shan C F, Wang B K, Xu H J, Tang Y. Hollow CeOx/CoP heterostructures using two-dimensional Co-MOF as template for efficient and stable electrocatalytic water splitting[J]. ChemNanoMat, 2020, 6(7): 1119-1126.
doi: 10.1002/cnma.v6.7 URL |
[117] |
Guo Y N, Tang J, Qian H Y, Wang Z L, Yamauchi Y. One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2 heterostructures as efficient bifunctional catalysts[J]. Chem. Mater., 2017, 29(13): 5566-5573.
doi: 10.1021/acs.chemmater.7b00867 URL |
[118] |
Deng K, Ren T L, Xu Y, Liu S L, Dai Z C, Wang Z Q, Li X N, Wang L, Wang H J. Crystalline core-amorphous shell heterostructures: epitaxial assembly of NiB nanosheets onto PtPd mesoporous hollow nanopolyhedra for enhanced hydrogen evolution electrocatalysis[J]. J. Mater. Chem. A, 2020, 8(18): 8927-8933.
doi: 10.1039/D0TA02537B URL |
[1] | 黄荣钦, 廖卫平, 晏梦璇, 刘石, 李远明, 康雄武. 磷掺杂的Ru-Pt合金催化剂及其电催化碱性析氢性能[J]. 电化学(中英文), 2023, 29(5): 2203081-. |
[2] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[3] | 谢文富, 邵明飞. 碱性电解水高效制氢[J]. 电化学(中英文), 2022, 28(10): 2214008-. |
[4] | 张文强, 于波. 高温固体氧化物电解制氢技术发展现状与展望[J]. 电化学(中英文), 2020, 26(2): 212-229. |
[5] | 吴 芝, 孙 岚, 林昌健. 太阳能光催化制氢研究进展[J]. 电化学(中英文), 2019, 25(5): 529-552. |
[6] | 高睿, 王俊凯, 胡中波, 刘向峰. 锂-空气电池正极催化剂表界面调控及构效关系研究进展[J]. 电化学(中英文), 2019, 25(1): 77-88. |
[7] | 唐堂,江文杰,牛帅,胡劲松. 高性能析氧电催化剂的设计策略[J]. 电化学(中英文), 2018, 24(5): 409-426. |
[8] | 马元元,郭昭薇,王永刚,夏永姚. 电池电极反应的新应用:分步法电解制氢气[J]. 电化学(中英文), 2018, 24(5): 444-454. |
[9] | 冷文华. 结合光电化学和瞬态吸收光谱技术研究光电化学分解水载流子动力学[J]. 电化学(中英文), 2014, 20(4): 316-322. |
[10] | 任晓光, 杨杰. 二乙基二硫代氨基甲酸钠在原油模拟液中对316L钢的缓蚀作用[J]. 电化学(中英文), 2012, 18(2): 181-185. |
[11] | 林胜舟, 蔡增鑫, 王贵生, 周合兵, 李伟善, . DTAB-KTL复合添加剂抑制锌电极腐蚀的协同效应[J]. 电化学(中英文), 2009, 15(3): 264-268. |
[12] | 刘召娜, 张进涛, 田芳, 刘朋朋, 马厚义, 丁轶, . 高效铂-纳米多孔金催化剂的设计和制备[J]. 电化学(中英文), 2008, 14(3): 273-277. |
[13] | 程杰, 叶锋, 王同涛, 李晶晶, 王永亮, 王新东, . 泡沫镍载钌催化硼氢化钠水解制氢[J]. 电化学(中英文), 2008, 14(3): 269-272. |
[14] | 赵景茂,刘鹤霞,狄伟,左禹. 咪唑啉衍生物与硫脲之间的缓蚀协同效应研究[J]. 电化学(中英文), 2004, 10(4): 440-445. |
[15] | Maria Radeva,Maya Lambrera,Plamena Angelova,Nelly Traitcheva,Hermann Berg. 电场或电磁场和光动力的协同效应对癌细胞失活和坏死的作用(英文)[J]. 电化学(中英文), 2004, 10(3): 260-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||